
NAVAL POSTGRADUATE SCHOOL
- . Monterey, California

0

* Lf
"S STA TPv l

DTIC 7
M DEC 0

THESIS

DYNAMIC RECONFIGURATION AND
LINK FAULT TOLERANCE

IN A TRANSPUTER NETWORK

by

Winfred Prescott Pikelis

June 1989

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution unlimited

89 1' 006

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification .uthority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

0 4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6h Office Symbol 7 a Name of Monitoring Organization
Naval Postgaduate School (f Applicable) Code 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Elammt Numbca- Project No I Tak No I Wotk Unit Aocemon No

11 Title (Include Security Classification)
Dynamic Reconfiguration and Link Fault Tolerance in a Transputer Network

12 Personal Author(s) Winfred Prescott Pikelis

13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From To June 1989 161
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

1 7 Cosati Codes 1 8 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Dynamic Reconfiguration, Transputer, Fault Tolerance, OCCAM, Crossbar,

, Message Exchange, Link Fault Recovery, Circuit Switching Network

1 9 Abstract (continue on reverse if necessary and identify by block number
This thesis explores dynamic reconfiguration and link fault tolerance in a Transputer network using software
controlled crossbars. A message exchange system was designed, implemented and evaulated to facilitate various
aspects of dynamic interconnectivity between processing nodes, as well as detection and recovery from failed
network links without loss of data. As implemented, the message exchange can be embedded with application
code which can direct network topology to facilitate code execution.

20 Distributio:.IAvailabiliv of Abstract 21 Abstract Security Classification
[J unclassified!unhimited EJ same &t repon 1 DlIC user, Unclassified

22a Name of Respomnible Individual 22b Telephone (Include Arec code) 22c Office Symb)l
Professor Uno R. Kodres (408) 646-2197 Code 52Kr
DD FO.kRM l1473, 84 MAR 83 APR edition may be used until exhausted securitN classification of this pace

All othcr editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Dynamic Reconfiguration and Link Fault Tolerance
In a Transputer Network

by

Winfred Prescott Pikelis
Lieutenant, United States Navy

B.S., University of Nebraska, 1980

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1989

Author:
Winfred P. Pikelis

Approved by: / ' 4--
Uno /R. Kodres, Th is Advisor

,\ g ory fu. zlrd,. Second Reader

Robert B. McGhee,
Chairman, Department of Computer Science

Kneale T. M""Mt'l z --
Dean of Information and Policy Scitnces

ii

ABSTRACT

This thesis explores dynamic reconfiguration and link fault tolerance in a Transputer

network using software controlled crossbars. A message exchange system was designed,

implemented and evaluated to facilitate testing various aspects of dynamic interconnec-

tivity between processing nodes as well as detection and recovery from failed network

links without loss of data. As implemented, the message exchange can be embedded with

application code which can direct network topology to facilitate code execution.

Aeses ion For
INTIS GR OUH
DTIC TAB
Unannounoed [
Justification

Distribution/

Availability Codes

IAvail and/or
Dist Special

Alii

DISCLAIMER AND ACKNOWLEDGMENT

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made within the

time available to ensure that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

Many terms used in this thesis are registered trademarks of commercial products.

Rather than attempting to cite each individual occurrence of a trademark, all registered

trademarks appearing in this are listed below the firm holding the trademark.

INMOS Lirited, Bristol, United Kingdom:

Transputer Occam

IMS T800 IMS B012

IMS T414 IMS B004

IMS T212 IMS C004

Transputer Devlopment System IMS B401 TRAM

TABLE OF CONTENTS

I. INTRODUCTION.. 1

A. BACKGROUND... 1

1. Single High Speed Processor...................... 1

2. Multiple Processors Using A Shared Bus 1

3. Multiple Processors Using

Point-To-Point Communications.................... 2

B. TRANSPUTE= TECHNOLOGY................................ 3

C. MOTIVATION... 4

D. OBJECTIVES... 5

E. THESIS ORGANIZATION...............................

II.THE TRASPUTER.................... 7

A. 7 UCAT ING; SEQDUENTIAL PROCESSES.................. 7

E.PRCSO ARCHITECTURE...............................38

1. Cen, rai Processing Unit (CPU)

adSec7,2en: al Operation......................... 6

2. .kEole and Communications................. 12

.2 i

4. ins... 16

E. Eze r raI Ev e nt I n,.)u 17

F. Fia~i Poi n U nitF (P U)........... '

Benhn sPerfor.mance Comparisons.............. 1E

C. PROCESSOR OPERATION - PARALLEL MODE 18

1. Process Representation 18

2. Process Priority and Interrupts 19

3. Process Scheduling 20

4. Time Slice Periods 22

D. PROGRAMMING LANGUAGE - OCCAM 22

1. Processes 24

2. Constructs 24

3. Configuration 29

1. Program D-velopment 30

5. Programming Practices 30

6. Programming Environment 31

III.MESSAGE EXCHANGE HARDWARE 33

A. C004 LINK CROSSBAR 33

1 . General 33

2. Hardware Description 34

3. Software Commands 36

B. BC!2 TRANSPUTER MODULE MOTHERBOARD 37

1. Mothcrboard Configuration 38

2. T212 Transputer Crossbar Controller 43

3. Transputer Modules 45

C. B004 DEVELOPMENT BOARD 46

1 . General 46

2. T414 Transputer 48

D. MESSAGE EXCHANGE HARDWARE CONFIGURATION 48

V-

IV.MESSAGE EXCHANGE FUNCTIONAL DESCRIPTION 50

A. OVERVIEW .. 50

B. SYSTEM OPERATIONS 52

1. Link Control Command Description 52

2. Link Failure And Recovery Procedures 52

3. Link Control Command Action Summary 55

C. CONTROLLER MODULE 57

1. Subprccedure: reset.or.nil 57

2. Subprocedure: c4.cmd 58

3. Subprocedure: get.current.tie 59

4. Subprocedure: make.conn 60

5. Subprocedure: break.conn 63

6. Main Controller Code 64

D. TRAM MODULE 69

1. Manager Process 70

2. Agent Process 74

3. User Process 75

4. TRAM Code Configuration 76

5. Global Configuration 77

V. MESSACE EXCHANGE PERFORMANCE EVALUATION 80

A. DATA TRANSFER VARIATIONS AND SYSTEM EFFICIENCY .. 81

1. Data Block Size 81

2. Data routing Via Multiple Crossbars 88

B. TRAM CODE STRUCTURE 91

C. LINK FAULT RECOVERY PERFORMANCE 93

vi

VI.CONCLUSIONS AND RECOMMENDATIONS 96

A. CONCLUSIONS 96

B. RECOMMENDATIONS FOR FOLLOW-ON WORK 97

APPENDIX A MESSAGE EXCHANGE LIBRARIES AND SYSTEM CODE 101

APPENDIX B MESSAGE EXCHANGE TEST CODE FOR B004 125

APPENDIX C MESSAGE EXCHANGE ACTIVITY DISPLAY 132

LIST OF REFERENCES 145

INITIAL DISTRIBUTION LIST 147

LIST OF FIGURES

2.1 Transputer Architecture Block Diagram 9

2.2 Transputer Processor Blczk Diagram 10

2.3 Instruction Format 11

2.4 Hardware Communication Link Block Diagram 13

2.5 Serial Communication Link Protocol 14

2.6 T800 Transputer Memory Map 15

2.7 Process Workspace 20

2.8 Linked Process List 21

2. 9 Single Element Buffer 25

2.10 Two Element Buffer 26

2.11 Single And Multiprocessor Equivalence 30

3.1 IMS C004 Block Diagram 33

3.2 IMS C004 Hardware Implementation 35

3.3 IMS EO'2 Slot And Edge Connector Arrangement 38

3.4 B012 Configuration Variations

Via P2 and Ki Jumpers 39

2.5 Link Organization Between

R012 Slots and C004 Crossbars 41

3 E012 Edce Connectors P1 And P2 42

3.7 Transputer Control Hierachy 43

3.8 T212 C004 Controller Link Organization 44

3.9 B401 TRAM Pin Arrangement 45

3.10 IMS B004 Transputer Development

Board Block Diagram 46

3.11 Message Exchange Hardware Configuration 49

4.1 Link Control Comrand State Diagram 54

4.2 Crossbar Connections To Connect Any

LinkO To Any Link3 61

4.3 Crossbar And Jumper Connections

To Connect Two Like-links 64

4.4 TRA2M Code Process Organization 70

5.1 Execution Time Versus Data Block Size 86

5.2 Data-To-Control Communication Ratio 87

5.3 System Link Control Overhead 89

5.4 Performance With Communication Type Restrictions 91

5.5 TR2,1 Code Process Prioritization And User Load ... 93

6.1 Multipie B012 Connectivity And Cc.-Lrc 99

LIST OF TABLES

2.1 TRANSPUTER PERFORMANCE BENCHMARK COMPARISONS 18

3.1 C004 CROSSBAR CONTROL COMMANDS 37

4.1 LINK CONTROL COMMANDS :AND PROGRAM MODULE ACTIONS 56

4.2 JUMPER PLACEMENT FOR C004 TO C004 CONNECTIONS ... 62

5.1 SYSTEM PERFORMANCE DATA: UNLOADED, NO FAULTS 83

5.2 SYSTEM PERFORYLANCE DATA: UNLOADED, WITH FAULqS ... 83

5.3 SYSTEM PERFORMANCE DATA: LOADED, NO FAULTS ?4

5.4 SYSTEM PERFORMANCE DATA: LOADED, WITH FAULTS 84

5.5 LINK ROUTING ANALYSIS RESULTS 9

5.6 PERFORMANCE ASPECTS OF FAULT

DETECTION AND RECOVERY 95

I. INTRODUCTION

A. BACKGROUND

Computer technologies conue., to evolve along a variety of paths, each with an

accompanying set of advantages and disadvantages. Typically, the primary design goal

in the development of new, superior computer is to achieve processing performance

beyond what is currently available in a given cost range. The speed with which the

assigned task is accomplished is a key measure of a computer's ability.

1. Single High Speed Processor

One path toward this goal concentrates efforts on improving the abilities of an

individual processor: the device at the heart of most computers. Vast improvements have

been realized in improving the processor architecture and shrinking the dimensions of the

components to reduce the time needed to physically move control and data signals from

one point to another within the processor. Even electrons moving at near the speed of

light require a finite time to travel finite distances, thus imposing an upper bound upon

maximum obtainable performance. More improvements in this approach will no doubt

occur, however, they, will be realized with ever greater expense for each small increase of

processing speed.

2. Multiple Processors Using A Shared Bus

Another approach involves dividing the task among multiple processors, each

assigned a portion of the task. This allows processing of different pieces of the task to

occur s'nmiltaneously or in parallel. Ideally, the time required to complete a given task

that is divided in such a manner should decrease proportionally with the number of

processors assigned. That is, doubling the number of processors should result in reducing

the time required to complete a given task by half. In practice, however, the addition of

processors does not result in linear performance improvements since each task will

always contain some portion which must be executed sequentially, thus voiding the

parallel processing capability available. Amdahl [Ref. 1] explained that this occurrence

places an upper limit on potential gains made in parallel processing, regardless of the

number ot processors used. This paper assumes, however, that a given task can be

divided sufficiently to warrant a large degree of parallel processing.

Another obstacle exists preventing parallel machines from achieving maximum

potential performance gains. Processors working in parallel will need to share data as the

processing proceeds. This sharing of resources among many processors leads again to

the problem of stretching the capabilities of individual components. In this situation, the

common data path and common memory storage devices will become a performance

restriction as the number of processors involved is increased [Ref. 2:p. 5]. Greater

advances in processor technologies over bus and backplane technologies further

exacerbates this problem, since by adding faster processors to a given balanced

multiprocessor bus, the bus will become overloaded and hence slow the entire system.

3. Multiple Processors Using Point-To-Point Communications

To avoid the potential bottlenecks associated with having all processors sharing

a common communication resource, processors can communicate more directly using

distributed connections, that is, each processor has its own finite set of independent

connections. As the number of nodes in a network grows, however, a point is reached in

which all pairs of processors will no longer be directly connected. The transport

mechanisms used for data communications and which must deal with these problems can

be classified into two broad categories: packet switching and circuit switching.

a. Packet Switching

In a large network where all points cannot directly communicate, the

conn',cl~oa must be completed through intermediaries. This is known as packet switch-

ing or packet routing. Data is carved into blocks of convenient size and passed with

routing information from node to node until the desired destination is reached. Packet

routing is used extensively in hypercube architecture computers which are a network of

processors symmetrically interconnected so as to minimize the distance between any two

nodes. Although this method is much less restrictive than a shared bus, some overhead is

still incurred as processing time is dedicated to the task of passing data.

b. Circuit Switching

In order to avoid the need for passing data along intermediate nodes,

additional hardware can be used to assign specific temporary paths between processors

wishing to communicate. This is known as circuit switching and exists quite commonly

in the form of a telephone exchange. When one party dials another, a connection is made

and dedicated for that specific communication for the duration of the call. When the call

is complete, the connection is broken and may be used for a new connection. This clearly

avoids the overhead of intermediate nodes passing data, however, new overhead is

created in the task of managing the available connections. In circuit switching, the

connection must be made and broken for each communication, and the event of "busy"

connections must be handled.

B. TRANSPUTER TECHNOLOGY

Another technology has evolved which attempts to combine the advantages of the

examples mentioned above while hoping to avoid the difficulties. A device called the

Transputer combines a processor with its own local memory storage and four specialized

data paths or links designed to communicate directly with other Transputers. Thus. as the

number of processors and processing power in the network grows, the amount of memory

and links available also expand. By providing its own direct communications path, the

problems of bus contention are largely overcome. However, evejy Transputer in a

network larger than five nodes cannot communicate directly with each other since each

Transputer contains only four hardware links.

Although the number of communication paths grows as Transputers are added to the

network, establishing a dedicated path directly between any two processors will not

always be possible. To allow communications between any two nodes, the message must

either be passed via intermediate nodes (packet routing) or additional hardware must be

employed to connect a dedicated path (circuit switching). Because of the synchronous

nature of communication in Transputers, packet routing may introduce deadlock if it is

not implemented carefully [Ref. 3:p. 110].

As a further complication, growth in the number of links between Transputers

increases the probability of communications failure. When communicating via links a

failure of the medium causes the link engines involved to wait forever which will likely

result in failure of the processing in progress. Even without link failures or synchroniza-

tion limitations, packet routing systems incur a potentially significant overhead in passing

data between nodes.

C. MOTIVATION

Modem weapons systems depend heavily upon the availability of powerful proces-

sors to monitor equipment, evaluate sensor inputs, display command and control

information and calculate trajectoric and weapons intercepts. Weapons systems control

computers can be described by following characteristics [Ref. 4:p. 11]:

* Physically distributed: specialized computers are located throughout the platform,
each dedicated to specific tasks but also in communication with the others,

4

* Fault tolerant: loss of some computers or some communications paths should not

bring the entire integrated system to a halt,

• High performance: to handle demands of sophisticated sensors, and

* Flexible and extensible: to respond quickly to a changing threat environment.

The AEGIS Modelling Laboratory at the Naval Postgraduate School considers the

Transputer's architecture and capabilities as potentially useful to fulfill the greater

demands of future weapons systems [Ref 4 :p. 11]. Although parallel processors in

general, and Transputers in particular can satisfy the above requirements, communica-

tions between processors may still present unacceptable restrictions either in ability to

link any two Transputers in the network or in delays in obtaining the connection.

D. OBJECTIVES

According to Lauwereins [Ref. 5:p. 223], "...The two major problems encountered

when interconnecting cooperating microcomputers are the detection of parallelism in the

application program and the overload of communication lines." No attempt is made here

to develop methods for detecting parallelism. Instead, this thesis explores dynamic

reconfiguration and link fault tolerance in a network of Transputers as a method for

conducting concurrent processing without prohibitive control overhead and thereby

overcoming the difficulties noted above.

The message exchange is a combination of procedures and "off-the-shelf' hardware

allowing direct communication between any two processors in the network. In the

message exchange, specific connections are dynamically requested, created and terminat-

ed as required by the application code with the use of program controlled switches. Thus,

its development served as a test vehicle in developing routines for software controlled

link switches and link fault tolerance. The message exchange concept is in contrast to

packet routing architectures in which all data as well as control signals are passed via

intermediate nodes to reach non-adjacent destination nodes.

5

Communication fault detection and recovery procedures are implemented to increase

the reliability of the inks and to ensure that requested connections are eventually

completed when link resources become available. With a functional message exchange

system, a programmer can insert specific task instructions within this structure and have

program controlled access to all processors in the network without additional code to

manage the communications.

E. THESIS ORGANIZATION

Chapter II describes in detail the various tools used, including Transputer architec-

ture and operatior., the principles upon which it is based, and fundamentals of the

programming language employed.

Chapter III describes the specific equipment upon which the message exchange was

implemented.

Chapter JV explains the code and structures of the message exchange program. This

includes explanations of the variouq modules of the program in both normal operation

and in the event of communications failure.

Chapter V discusses the testing and evaluation of the message exchange and the

aspects of program structure and communications load which affect performance.

Chapter VI presents the conclusions reached as a result of development, using and

evaluating the message exchange. Recommendations for further research concerning

Transputers, integrated weapons systems and this project is also included.

6

II. THE TRANSPUTER

A. COMMUNICATING SEQUENTIAL PROCESSES

Transputer is a combination of the words transistor and computer to emphasize its

intended purpose: a single-chip processor to be used as a fundamental building block in

large collections of parallel processors in much the same way that transistors are basic

components of more complex and capable devices [Ref. 6:p. 251. By using a collection

of Transputers, large parallel systems can be constructed which operates concurrently and

communicates through links. The Transputer was developed by INMOS Limited of

Bristol, United Kingdom, and has since expanded into a family of very large scale

integrated (VLSI) components with different capabilities. A typical member of the

Transputer family is a single chip containing processor, memory, and communication

links which provide point to point connection between Transputers.

Fundamental to the design of the Transputer is the concept of a process and how it

relates to concurrency. A process consists of a list of instructions intended to be executed

in sequence, and can be thought of as the program in execution in a single processor or as

the entity to which the processor is currently assigned [Ref. 7:p. 55]. This definition

applies not only to parallel processors but to a single processor whose processing power

is sequentially shared, or time sliced, among multiple processes.

Hoare's [Ref. 8] Communicating Sequential Processes (CSP) is one model for

concurrent or parallel programming, and is central to the design of the Transputer. In

CSP, a program is a collection of processes which can be combined to execute

sequentially on a single processor or in parallel on multiple processors. The data space

for any process executing in parallel is disjoint, thus alleviating the need for sharing

7

memory between processors. Although shared memory is not available, processes must

still communicate with each other. Therefore, CSP utilizes message passing between any

pair of parallel processes via declared communications channels between the two

processes.

B. PROCESSOR ARCHITECTURE

A block diagram of a T800 Transputer is shown in Figure 2.1 and the major

components are discussed in the following sections. Internally, a Transputer consists of a

memory, processor and communications system connected via a 32 bit bus. The bus also

connects to the external memory interface enabling additional local memory to be used.

The processor, memory and communications system each occupy about 25% of the

total silicon area, the remainder being used for power distribution, clock generators and

external connections [Ref. 9:p. 27].

1. Central Processing Unit (CPU) and Sequential Operation

The processor contains 32 bit processing logic, 32 bit integer arithmetic unit,

instruction and work pointers and an operand register. The on-chip four kilobyte high

speed memory, which can store both data and code, is directly accessed by the processor.

Where larger amounts of memory are required, the processcr can access a maximum of

four gigabytes of memory via the external memory interface [Ref 9:p. 47]. Figure 2.2

shows a block diagram of the processor.

a. Register Set

The design of the Transputer processor exploits the availability of fast

on-chip memory by employing only six registers used in the execution of a sequential

process. The combination of very few registers and a simple instruction set enables the

processor to have relatively simple and fast data paths and control logic. The six registers

are (Ref 9 :p. 28]:

Floating Point Unit

Processor
n

On-Chip t
Memory e

I e r Link20
n
a

External Memory
Interface

Figure 2.1. Transputer Architecture Block Diagram

" The workspace pointer (W) which points to an area of memory storage where

local variables are kept.

" The instruction pointer (I) which points to the next instruction to be executed.

* The operand register (0) which is used in the formation of instruction operands.

" The A, B and C registers which form an evaluation stack.

A, B and C are sources and destinations for most arithmetic and logical

operations. Loading a value into the stack pushes B into C and A into B before loading

A. Storing a value from A pops B into A and C into B.

9

O Register

Micro-Coded

A Register SeuenceS B Register Controller

C Re ister

32-bit Integer
I Register _j Arithmetic

W Register [Logic Unit

Figure 2.2. Transputer Processor Block Diagram

Expressions are evaluated on the evaluation stack and instructions refer to

the stack implicitly. For example, the add instruction pops the first two values (A and B)

from the stack, performs the addition, then pushes the result back onto the stack. The use

of a stack removes the need for additional instructions to explicitly manuever data during

the performance of an operation. Statistics gathered from a large number of programs

show that three registers provide an effective balance between code compactness and

implementation complexity. [Ref 9:p. 47]

b. Machine Instruction Format

The Transputer instruction set has been designed for simple and efficient

compilation of high-level languages. All instructions have the same format and are

designed to give a compact representation of frequent program operations. Instructions

are eight bits long and divided into two parts. The low-order four bits are the data and

the high-order four bits are the opcode or function as shown in Figure 2.3. The data is

loaded into the lower four bits of the 32 bit operand register which is operated upon by

the opcode. This allows 32 bits of data to be used if required.

1 ()

Instructions operate on the entire Operand Register as the operand

All intructions load their data into the lower 4 bits

7 43 0
I Function Data

SOperand Register
31 4 3 0

Figure 2.3. Instruction Format

Four bits can provide identification for 16 instructions which are known as

direct functions. Thirteen direct functions actually manipulate the processor. These

single byte instructions are the most frequently used such as store, load, calls and jumps.

The three remaining instructions: Pfix, Nfix, and Opr manipulate the operand register by

constructing and executing larger instructions. [Ref 9:p. 29]

Pfix loads its four data bits into the operand register then shifts the operand

register left four bits. Nfix is similar except the contents of the operand register are

complemented prior to shifting left. Consequently, operands can be extended to any

length up to the length of the operand register by a sequence of prefix instructions.

Operands in the range of -256 to +255 (eight bits and two operation types) can be

represented using one prefix instruction. Finally, Opr causes its operand to be interpreted

as an operation, known as an irdirect function, to be executed on the values held in the

evaluation stack. This allows up to 16 such instructions to be encoded in a single byte

instruction. However, the prefix instructions can be used to extend the operand of an Opr

instruction just like any other. The instruction representation therefore provides for an

indefinite number of operations. [Ref 9:p. 301

Il

Encoding of the indirect functions is chosen so that the most frequently

occurring operations are represented without the use of a prefix instruction. These

include arithmetic, logical and comparison operations such as add, exclusive or and

greater than. Less frequently occurring operations have encoding which require a single

prefix operation. Measurements show that about 70% of executed instructions are

encoded in a single byte; that is, without the use of prefix instructions. Many of these

instructions, such as load constant and add require just one processor cycle [Ref 9:p. 49].

2. Link Engines and Communications

Four identical INMOS bidirectional links provide communication between

processors, and between processors and other compatible signal sources. Each link

consists of an input and output channel, and can perform simultaneous, independent input

and output communications. Instructions are included in the Transputer's instruction set

for performing input and output operations using the links. A block diagram of a

communications link is shown in Figure 2.4. Each link engine also includes an

independent direct memory access (DMA) controller and serial communication logic.

Initiating a transfer down a link takes about a microsecond (20 processor cycles), but

once the transfer is started it will proceed with minimal direction from the processor,

consuming typically only four processor cycles (per active link engine) every four

microseconds [Ref. 10:p. 151. Although communications are synchronized between

sender and receiver, they are not synchronous with clock input (Clockln) to the

Transputer and are insensitive to phase. Thus, links from independently clocked systems

may communicate providing only that frequencies are within specifications

[Ref 9:p. 3701.

12

DMA Controllers Serial Output
Internal (Seperate DMAs for

Bus Input and Output) Controller

Message Location
K32 Bit Regite j Links

Message Lengthi
R ter J Serial Input

Resume Process Controller

Figure 2.4. Hardware Communication Link Block Diagram

To execute an external communication via a hardware link, the communication

link address, size and location of a message are specified. This initializes the DMA

controller with the size and location of the message to be communicated. The process

executing the communication instruction is suspended and a pointer for later resuming

the process is saved. If available, another ready process from an active process list m:"v

then be executed. When both the sending and receiving links have been initialized in this

manner, the message communication proceeds. When the communication is complete,

the process which was suspended for communication is allowed to resume. A more

detailed description of parallel process management is provided in [Ref 91.

Messages are transmitted by the links one byte at a time in a bit-serial format.

After a receiver has recognized the reception of a byte and is capable of receiing

anothcr, the receiver transmits an acknowledge message. The transmitter will await

recepion of the acknowledge message before transmitting the next message byte. Since

13

the link hardware performs no error checking on messages, the purpose of the

acknowledge message is solely to control the flow of message bytes between the links.

Figure 2.5 shows a formatted message byte and an acknowledge message. INMOS

recommends that error checking should be provided in software if external link length

exceeds 0.9 meters. Additional hardware is available which can translate the link

protocol into forms suitable for long haul communications and formats compatible with

different system. Information regarding INMOS link connections and conversion to and

from other protocols or signal technologies, including fiber optics, can be found in

[Ref. 11], and [Ref. 12].

0 1 2 3 4 5 6 7

DataPacketl1 1 1

Start Data Data Stop
Bit Bit Bit

Acknowledge Packet 1 0

Figure 2.5. Serial Communication Link Protocol

Internal communications, that is, communications between parallel processes

executing on a single Transputer, can also be performed. In this case, memory transfers

and software register equivalents are used instead of the DMA link engines since all

activity takes place within the same processor. A memory address and the size and

locatinn of a message are specified, then the communications instruction is executed just

as in the external communication case. When both sending and receiving processes are

ready to communicate, the task is accomplished by performing a memory-to-memory

transfer of the message data. From the high level language programmer's view, internal

anid external link communications are handled identically.

14

3. Memory

Memory addressing starts at the most negative 32 bit address (hexadecimal

80000000) with four kilobytes of fast, static memory on-chip for high rates of data

throughput. Each memory access takes one processor cycle [Ref 9:p 70]. It is important

to note that the on-chip memory, which is rated at 50 nanosecond cycle time, is not used

as a memory cache for off-chip memory, but as the first portion of one linear address

range. A total of four gigabytes of memory can be addressed by the Transputer and

accessed at a sustained rate of 26.6 megabytes per second (at 20 MHz clock speed)

[Ref 9 :p. 43], some of which is dedicated for specific purposes in Transputer operation.

A memory map is shown in Figure 2.6.

Memory Configuration, #7FFFFFFE

Bootstrapping Info #7FFFFF6C
O ff-C hip (External) ,-"

Memory }
On-Chip (Internal) ,"0

Memory
#80000070

Register Save Locations,
Queue Pointers

#80000020
Communications Links

#80000000

Figure 2.6. T800 Transputer Memory Mao

Off-chip memory is accessed through an external memory interface controlling a

multiplexed 32 bit address and data bus. Since this one bus must be shared between

address and data information access to external memory' is considerably slower than

on-chip. A range of three to five processor cycles is typically required to access off-chip

15

memory. For this reason, the programmer pursuing performance optimization should be

aware of code and data placement in memory and ensure that frequently used variables

and code segments are placed in on-chip memory. If faced with a choice, on-chip

memory is better suited for data, since four instructions, eight bits each, can be obtained

in one 32 bit fetch, hence code accesses are less frequent [Ref 10:p. 2].

Additional hardware is provided on the external memory interface to provide

refresh cycles for dynamic random access memory. Control lines and signals are also

provided to facilitate peripheral device direct memory access to the external segment of

memory.

4. Timers

The Transputer provides two 32 bit timer clocks which 'tick' periodically.

These timers provide accurate process timing, allowing processes to deschedule them-

selves in a specific time and allowing the programmer to execute instructions at either an

absolute time or after a relative interval from a current time. One timer is accessible only

to high priority processes and is incremented every microsecond, cycling complete.y in

approximately 4295 seconds. The other is accessible only to low priority processes and

is incremented every 64 microseconds giving exactly 15625 ticks in one second. It has a

full period of approximately 76 hours. [Ref 9:p. 52]

Instructions are provided for initializing and reading the current timer values.

Additionally, instructions are piovided for suspending execution of a process until a

specified timer value is reached. To implement this instruction, the Transputer maintains

a linked list of suspended processes waiting on timer values. Separate lists are

maintained for the high and low priority timers.

A process can arrange to perform a timer input in which case it will become

ready to execute after a specified time has been reached. The timer input instruction

16

requires a time to be specified. If this time is in the past then the instruction has no

effect. If the time is in the future the process is deschedule and rescheduled when the

time is reached.

5. External Event Input

EventReq and EventAck provide an asynchronous handshaking interface

between an external event and an internal process and behaves similarly to an external

interrupt input. To the Transputer, this external event input appears as a communications

channel which is capable of transmitting a signal to a user's program.

A user's program requesting input from the external event channel will be

suspended if the external event input is not being asserted. Then, when the external event

input is asserted the process will be added to the end of an active process list to wait it.-

turn for execution. Either high or low priority processes may request input from the

external event channel, but only one process may use the event channel at any given time.

6. Floating Point Unit (FPU)

The 64 bit FPU of :hc T800 Transputer provides single and double length

arithmetic floating point standard ANSI-IEEE 745-1985. It is able to perform floating

point arithmetic concurrently with the CPU sustaining in excess of 2.25 Mflops on a 30

MHz device. All data communication between memory and the FPU occurs under

control of the CPU. [Ref 9:p. 621

The FPU consists of a microcoded computing engine with a three element

floating point evaluation stack for manipulation of floating point numbers. Each stack

register can hold either 32 bit or 64 bit data, indicated by an associated flag which is set

when a floating point value is loaded. The FPU stack behaves similar to the CPU stack

described in Chapter HI.

17

7. Benchmarks Performance Comparisons

Shepherd [Ref. 13:pp. 10-13] provides the benchmark data shown in Table 2.1

comparing members of the Transputer family with various other machines. Dhrystones

and Whetsones are standard algorithms used in measurement of processor capability.

Reference 13 includes the test code used, as well as complete reference listings of all

third-party tests and vendor publications.

TABLE 2.1

TRANSPUTER PERFORMANCE BENCHMARK COMPARISONS

Computer Evaluated IDhrystones Single Precision Double P1recisionl
all figures in thousands per Second Whetstones Whetstones

(n/a: figures not available)

IBM 3090/200 31,250 n/a n/a
T800-30 (projected) n/a 6,000 3,800
T800-20 8,547 4,000 2,500
VAX 8600 6,423 n/a n/a
Intel 80386-16 4,300 n/a n/a
Motorola 68020-17 3,977 n/a n/a
Intel 80286/80287 1,976 300 n/a
VAX 11-780 (+FPA) 1,650 1,083 715
SUN 3 n/a 860 790
T414-20 n/a 663 163
Motorola MC 68000-8 1,136 n/a n/a
IBM PC-RT (+FPA) n/a 200 n/a
Intel 8086/8087 n/a 178 152
IBM PC-RT n/a 12 n/a

C. PROCESSOR OPERATION - PARALLEL MODE

1. Process Representation

In both sequential and parallel operation, the fundamental unit of execution is

the process. A process may consist of many sub-processes executing concurrently by

sharing the processor's resources. A process may be assigned as either a high or low

priority in execution. High priority processes execute without external interruption,

while low priority processes run until blocked by communications or timer inputs.

18

Parallel operation is based on the following assumptions [Ref 4:p. 24]:

0 The quickest context switch is made by saving the least amouit of data for any
given process,

0 A process must perform I/O, or

0 A process not performing I/O is in a loop and must eventually execute a loop end
instruction or jump instruction, and

* A high priority process needs to execute as soon as it is ready, and executes until

completion or blocked for communication.

A concurrent process may be active at any time, in which case it is either

executing or on a list waiting to be executed. Inactive processes are ready to input, ready

to output, or waiting until a sp ,cificd tine.

Concurrency administration in the Transputer is implemented in hardware,

unlike most multi-tasking systems in which control takes place in software. The

following hardware support is provided for implementation of parallel operations

[Ref 9:p. 31]:

0 Two Timing Registers,

0 Four Process Queue Registers, and

. Special registers for saving some process context switch data.

2. Process Priority and Interrupts

Each concurrent process is represented by a vector of words in memory called

the process workspace as shown in Figure 2.7. A process is in one of three states:

executing. ready, or blocked and the Workspace Pointer Register points to the executing

process. This space is used to hold the local variables and temporary values manipulated

by a process. The workspace is organized as a falling stack with end-of-stack addressing.

All local variables are addressed as positive offsets from the Workspace Pointer.

[Ref 9:pp. 28-31]

1 C

Memory

Workspace:

used to hold local variables and

temporary values manipulated

by the process.

local variable 2 Workspace Pointer

local variable 1 Instruction Pointer

local variable 0 - __ (for descheduled processes)

Linkage Information
(for scheduling communication
and timer inputs)

Figure 2.7. Process Workspace

3. Process Scheduling

The scheduler operates to avoid having inactive processes consume any

processor time. Active processes waiting to be executed are held on a linked list of

workspaces implemented using two registers: one pointing to the first process on the list

and the other to the last. Figure 2.8 shows process S in execution, processes R, Q and P

awaiting execution.

A high priority process is executed (chosen in order of receipt) until it is unable

to proceed because it is awaiting an input or output, or waiting for the timer. Whenever a

process is unable to proceed, its instruction pointer is saved in its workspace and the next

20

process is taken from the list. Actual process switching times are very small as little

process state information needs to be saved; even the evaluation stack is not saved in

process rescheduling [Ref 9:p. 311.

RgsesLocals Progra",Registers,.,.,-

Front gn PrBack I' -'-

Q--
A R "
B

Workspace j-.S
Next Instruction

Operand

Figure 2.8. Linked Process List

When a low priority task is executing and a high priority task is ready, it

preempts the low priority task. Generally, this takes place at the end of the current

instruction. Some instructions, like block moves and 1/0, are interruptible. In the event

of such an interrupt the state of the low priority process is saved in special system

memory locations at the low end of on-chip memory and the workspace pointer is placed

at the head of the low priority queue. Note: high priority tasks are not pre-empted.

[Ref 4:pp. 25-281

The process context switch time is low since only six registers need be saved

and stored in fast, on-chip memory. There is full machine instruction level support for

context switching which yields very low overheads. Occam context switching overhead,

about one microsecond, is comparable to conventional control structures (e.g., loops,

procedure calls). [Ref. 14 :p. 1391

21

4. Time Slice Periods

Low priority processes share the processor in time sliced intervals. A time slice

period is defined as 5120 cycles of the external five megahertz clock, or about one

millisecond. When a running low priority process has consumed its allotted time slice,

the scheduler attempts to deschedule the executing process to make the processor

available for the next processes on the queue. [Ref 9:pp. 50-511

Processes are descheduled at the end of their time slice, or shortly thereafter (to

allow for completion of the currently executing instruction), and added to the end of the

low priority queue. In general, the minimum period of time for time-slicing low priority

processes is one millisecond with the expected maximum period being two milliseconds.

Given n low priority processes and no high priority processes, the maximum time a

process will wait in the process queue for CPU time is 2n-2 time slice periods.

[Ref 9:p. 51]

D. PROGRAMMING LANGUAGE - OCCAM

Transputers can be programmed in most high level languages, and are designed to

ensure that compiled programs will be efficient. Where it is required to exploit

concurrency and still to use standard languages, Occam can be used as a harness to link

modules written in selected languages. Occam and Transputers were designed together

based on Hoare's CSP. Transputers include special machine instructions and hardware to

provide maximum performance and optimum implementations of the Occam model of

concurrency and communications. Therefore, to gain the most benefit from the Transput-

er architecture, the whole system can be programmed in Occam. This provides all the

advantages of a high level language, maximum program efficiency and the ability to use

the special features of the Transputer. (Ref 9 :p. 31

"22,

Many programming languages depend on the existence of the uniformly accessible

memory found in conventional single processor computers. As discussed in Chapter I,

such an architecture would likely require the existence of a shared bus which itself

becomes a bottleneck as the number of processors in a multiprocessor system grows. The

aim of Occam is to remove this difficulty by expressing arbitrarily large systems in terms

of localized processing and communication. INMOS describes Occam as follows:

The main design objective of Occam was therefore to provide a language which
could be directly implemented by a network of processing elements, and could
directly express concurrent algorithms. In many respects, Occam is intended as an
assembly language for such systems; there is a one-to-one relationship between
Occam processes and processing elements, and between Occam channels and links
between processing elements. [Ref 2:p. 5]

Occam can further be considered an assembly language in that memory is viewed as

a linear object and all resources are assigned at compile time thereby precluding

recursion or dynamic resource allocation. The general simplicity of the language is

recognized by being named after William of Occam, a 14th century philosopher who is

responsible for the adage (known as Occam's razor): "Entities are not to be multiplied

beyond necessity" [Ref. 15:p. 1]. Hoare [Ref. 16:pp. 75-831 echoes this idea by stating,

"...There are two ways of constructing a software design. One way is to make it so

simple that there are obviously no deficiencies and the other way is to make it so

complicated that there are no obvious deficiencies. The first is far more difficult..."

Another attractive feature of Occam is that its semantics can be formally stated.

Welch [Ref 14:p. 1461 describes Occam as a formal logic for the expression, transforma-

tion and qualitative analysis of parallel, sequential and nondeterministic systems. By

analysis of a language which adheres to formal rules it becomes possible to analyze a

program in order to prove that it is, for example, deadlock free. Formal techniques can

23

also be used to transform a program into different but equivalent forms for either

efficiency or readability, or to adapt parallel code to run on a single processor and vice

versa [Ref 15:p. 132].

1. Processes

Occam enables an application to be described as a collection of processes which

operate concurrently and communicate through channels. In such a description, each

Occam process describes the behaviour of one component of the implementation, and

each channel describes a connection between components. The design of Occam allows

the components and their connections to be implemented in many different ways. This

additionally allows the choice of implementation technique to suit available technology,

to optimize performance, or to minimize cost [Ref 2:p. 5].

Each process can be regarded as an entity with internal state, which can

communicate with other processes using direct communication channels. Processes can

be used to duplicate the behaviour of specific entities such as a logic gate or a

microprocessor. Processes are finite: each starts, performs a set of instructions then

terminates. Processes may be nested within each other much as subprocedures are

contained within procedures in other languages.

2. Constructs

a. Sequential: SEQ

A fundamental building block of sequential code is the SEQ statement.

Occam code is written sensitive to horizontal indentation of the each line. Blocks are

defined, therefore, by their depth of indentation. A block of sequential code is headed by

the keyword SEQ and followed by the code indented two spaces as in the example

below. The ":=" is the assignment symboi which is one of Occam's three primitives.

Fhe other primitives, "!" and "T', are discussed below.

24

SEQ
x := a + b
y c * dz :x /y

b. Communication

A connection formed between two concurrent processes is known as a

channel and implemented either internally in the case of the two processes existing on the

same processor, or via hardware links in the case of multiple processors. Communica-

tions are synchronized and unbuffered. If a channel is used for input in one process and

output in another, communication takes place when both processes are ready. Since a

process may have concurrency, it may have many input and output channels performing

communication at the same time.

Channel input "?" and channel output "!" along with the assignment

form Occam's three primitives. An example in Figure 2.9 below shows use of

communication constructs in a simple buffer. The process as pictured communicates via

two channel! ieclared "in" and "out". A series of variables assigned to "item" are

sequentially taken in and sent out of the process.

WHILE TRUE
SEQ inp item out -

in ? item
out ! item

Figure 2.9. Single Element Buffer

c. Parallel: PAR

The parallel construct keyword is PAR and has placement rules similar to

SEQ. Unlike SEQ, however, each line below PAR in the next indentation will be

logically executed in parallel and considered concurrent processes. In the example here

the three statements are executed simultaneously. [Ref. 17 :pp. 15-171

25

PAR
in ? itema
out ! itmb
x := itsa + itemb

The parallel construct is unique to Occam and provides a straightforward

way of writing programs which directly reflects the concurrency inherent in real systems.

A more involved example using a two stage buffer is shown in Figure 2.10 below. Note

the indentation of the SEQ blocks indicating the two executing parallel processes.

PAR in
WHILE TRUE

SEQ itema
in ? itema
ch ! itema ch

SEQ
ch ? itemb itemb
out ! itemb

out

Figure 2.10. Two Element Buffer

A priority level can be used with the PAA construct to form high and low

priority processes. The PRI PAR construct designates the first process in the following

indentation level as high priority, and the rest as low priority. If, as in the example

below, there are five processes executed in parallel and it is desired that two be assigned

high priorit, a combination of PRI PAR and PAR can be used:

PRI PAR
PAR -- high priority

processl
process2

process3 -- low priority
process4
process5

26

Since the PAR construct is more difficult to implement and more demand-

ing of CPU resources it should not be used in situations where SEQ would suffice.

Burns [Ref 15 :p. 29] states that PAR should be used instead of SEQ when:

• It more accurately reflects the properties of the program,

" It allows the subprocesses to be arranged and thus enables program transforma-
tions to be applied,

• It allows charnel operations to be executed in an order determined by the
dynamics of the program's execution rather than by a predefined and meaningless
sequence.

d. Alternation

The alternative construct, ALT, waits until one of the listed conditions

becomes true, then performs that guard and any subsequent code grouped with it. The

ALT construct provides a formal high level language method of handling external and

internal events that are usually handled by assembly level programming in conventional

microprocessors. A guard under an ALT is usually a channel input but can be other

boolean conditions or combinations. In the first example below, two channels are

awaiting input and each has a process associated with it. The process associated with the

first channel that becomes ready will be executed. The next example shows a boolean

condition and combination channel input an- boolean as as ALT guards.

[Ref 17:pp. 18-191

ALT ALT
cl ? x (x < y + 5) & SKIP

processl process3
c2 ? y c3 ? z & continue

process2 process4

Alternation is entirely nondeterministic in that the choice taken is not

predictable since it depends upon actions performed by other independent concurrent

processes. Furtnermore. if more than one choice in an alternation becomes ready

simultaneously, the guard selected is undefined in Occam. In practice. however, the last

defined of the guards becoming ready simultaneously will be selected. This is strictly a

matter of the compiler's implementation of the language and not of the language

definition. In order to force selection of a particular guard when more than one become

ready simultaneously, the PRI ALT can be used to give preferential treatment to the first

guard in the list. [Ref 17:p. 72]

e. Loop and Selection

Loops and conditional selections in Occam are very similar to other high

level languages. Conditions can be any legal expression which evaluates to a boolean

value. The constructs follow the same rules of blocking and indentation as mentioned

above with the SEQ keyword used to head a block. The examples below show a finite

and infinite WHILE loops.

WHILE (x - 5) > 0 WHILE TRUE
SEQ ALT

x x - 2 cl ? x
i i + 1 c2 ! x

Selection is accomplished with IF and CASE constructs typical in many

languages. The code associated with the first expression which evaluates to true will be

executed in an IF with multiple choices. To ensure completion of the IF construct in

situations where it is possible none of the conditions are met the last condition should

alway's be TRUE and its associated code may be a SKIP. For clarity, a boolean constant

"otherwise" can be declared and set to TRUE to replace the keyword as the last choice in

the IF construct:

IF
(x - 5) > 0 -- first condition to be tested

x := x * 2
(x = y) -- next condition to be tested

y := x - 5
otherwise -- otherwise assigned TRUE

SKIP

f. Replication

A replicator is used with SEQ, PAR, ALT or IF constructions to replicate

the component process a number of times. This ability allows for creation of multiple

code segments, each with potentially different parameters based on the incremented index

of the process. For example, a replicator can be used with SEQ to act as a conventional

loop or with a PAR to construct an array of concurrnt processes P1, P2, ... Pn

[Ref 17:pp. 20-211:

SEQ i = 0 FOR n PAR i = 0 FOR n
x := x * 2 Pi

3. Configuration

Assignment of processes to specific processors is called configuration. In a

sense the configuration section of an Occam program can be considered as the "main"

block in other languages in which the working code primarily calls previously defined

procedures and passes variables. Link assignments and global variable passing is

performed during configuration. The keyword PLACE ... AT is used to assign processor

links to processes.

Since each processor executes its code concurrently with other processors, a

variation of the PAR construct, PLACED PAR is used. In the example below a

network of processors will be assigned the process "process.a" using a replicated

PLACED PAR. Note that each process.a is also passed as a parameter the value of its

respective "index" which may be used in specializing the actions of each replicated

process.

PLACED PAR index = 0 FOR number.of.processors
PROCESSOR number, of. processors

PLACE input.channel AT link0.in
PLACE output.channel AT link2.out

process.a (input.channel, output.channel, index)

29

4. Program Development

Considering that parallel programming involves multiple processors, in most

cases there will be many ways to perform the same task. Finding the optimum

arrangement of processes and priorities will involve experimentation. Another design

intent of Occam is that the logical behavior of a program is independent of how the

processes are assigned to processors. According to INMOS:

It is guaranteed that the logical behaviour of a program is not altered by the
-;ay i- wh;.ch the prccesses are mapped onto processors, or by the speed of
processing and communication. Consequently a program ultimately intended for a
network of Transputers may be compiled, executed and tested on a single computer
used for program development. Even if the application uses only a single Transput-
er, the program can be designed as a set of concurrent processes which could run on
a number of Transputers. [Ref 9:p. 18]

This guarantee is useful in using a single Transputer to create complex programs

destined for multiple processors. Figure 2.11 shows the equivalence of single and

multiprocessor code, and the relationships between internal and external channels.

0 O Process

Z Processor

Figure 2.11. Single And Multiprocessor Equivalence

5. Programming Practices

Significant influence of program performance can be achieved by use of priority

in parallel constructs. Correct use of prioritization is especially important for most

30

distributed processes communicating via links and dependent upon prompt data flow for

timely program execution. If a message is transmitted to a Transputer and requires

throughrouting, as in a hypercube topology, it is essential that the Transputer input the

message then output it with minimum delay so that another Transputer somewhere in the

system would not be unnecessarily delayed waiting for the message. [Ref 10:p. 13].

Therefore, all processes which use links (external channels vice internal

channels) should be run at high priority. Processes which perform calculations only or a

minimum of communications should be run at low priority to preclude degrading the

efficiency of those processes performing external communication and subsequently the

efficiency of the network as a whole.

6. Programming Environment

The Occam compiler is packaged by INMOS within the Transputer Develop-

ment System (TDS), which provides compilers, libraries, a debugger, a unique text editor

and other facilities.

Code is entered within a "fold" editor: a text editor in which any number of lines

can be "folded" or replaced with a user defined header line. By using folds to condense

blocks of code, the entire program may always be viewed on just one screen without

having to page-up or page-down, or requiring a multiple window environment to view

different blocks of code simultaneously. A fold header line is identified by three leading

periods followed by the fold title, for example: "... fold title". Folds may be nested to

any level, and if selected wisely, can show the overall structure of a program with the

details hidden within the folds. To see the details the fold is entered and only the

contents of that fold are seen. Optionally, the text surrounding the fold may remain

visible, but will usually be off screen depending upon the size of the fold contents.

31

The fold editor and compiler work together as there are several specialized types

of folds. A PROGRAM fold contains code intended to be booted and run on a network

of Transputers external to the development board (described in Chapter III.) located in a

desktop personal computer (PC). Executable (EXE) folds contain code for the develop-

ment board in the PC. Both PROGRAM and EXE folds may contain separately

compiled, or SC folds to break up the code into stand alone units which may be compiled

and modified separately without affecting others thus reducing recompile time for minor

changes. Library (LIB) folds are also ava-.1able either predefined or created by the user to

contain global information which is referenced within appropriate PROGRAM, SC, or

EXE folds. Finally, any fold may be temporarily removed from compiler action by

nesting it within a COMMENT fold. [Ref. 18:pp. 13-22,40,84-86]

Transputer Development System version D700D was used for this project

Version D included, among other utilities, a debugger for error tracing. The debugger

was useful when used on code written for the B004 development board. However, as

may be expected, tracing errors in an external network of Transputers is difficult.

Complete details of the TDS can be found in [Ref 18].

32

III. MESSAGE EXCHANGE HARDWARE

The following sections discuss in detail the equipment used in the implementation of

the message exchange. A complete diagram showing major component relationships is

provided at the end of this chapter.

A. C004 LINK CROSSBAR

1. General

The IMS C004 is a programmable 32-way crossbar switch that supports the

INMOS link protocol to provide synchronized communication between similarly

equipped components. A crossbar can be thought of as a matrix of switches which

permit, in the case of the C004, any one of the 32 inputs to be directly connected to any

one of the 32 outputs. Figure 3.1 shows a block diagram of an IMS C004.

[Ref 9:pp. 367-368]

LinkInO 1 LinkOutO

• Crossbar •

• Switch •

LinkIn31 Nol LinkOut31

ConfigLinkln Control System

ConfigLinkOut - Logic Services

Figure 3.1. INIS C004 Block Diagram

This ability to manipulate 32 connections serves to greatly expand the flexibility

of the Transputer which typically contains four link engines. (Some specialized Trans-

puters have only two links, and new models are planned with eight). In the normal

situation, therefore, a Transputer may be directly connected to a maximum of four other

Transputers or link-equipped devices. If the applications requires that more than four

Transputers be logically connected, intermediate Transputers must be programmed to

pass data along to the desired destination, but only after incurring delays and additional

overhead as compared to a direct route. Use of a program controlled crossbar precludes

this problem by allowing one (or more) links from the Transputer to be directly

connected to as many as 32 different links. Thirty-two Transputers can be completely

configured using two IMS C004s [Ref. 19 :p. 13]. For applications requiring even greater

flexibility, arbitrarily large crossbars can be constructed by cascading multiple COO4s as

described in [Ref 19:p. 8].

2. Hardware Description

The C004 is packaged in an 84 pin grid array chip and internally organized as a

set of 32-to-I multiplexers. Each multiplexer has associated with it a six bit latch, five

bits of which select one of 32 inputs as the source of data for the corresponding output.

The sixth bit is used to connect or disconnect the output. When this last bit is set high the

link is considered to be active. These latches can be read and written by messages sent

on the configuration link via ConfigLinkln and ConfigLinkOut. Figure 3.2 shows the

C004 hardware implementation. [Ref 9 :p. 377]

A reset input is also provided to clear all latches so that no connections are

active. CapPlus and CapMinus are connections for an external capacitor, and LinkSpeed

sets the transfer rate through the crossbar at either ten or 20 Megabits per second.

34

Clockln provides input from a five MHz clock used by the C004 for internal component

timing. Recall, however, that input communication synchronization is not dependent

upon ClockIn or its phase. [Ref 9:pp. 368-372]

LinklnO-31

32-to-1output LinkO~ut
Multiplexor SchnzaonBuffer

Multiplexor S-0[ynchroni'zation Outptfer ~ lu

_________-of_ LinkSpeed

ClnD System Services CapPlus
Clockl---W-CapMinus

Reset

Figure 3.2. IMIS C004 Hardware Imllementation

35

Although C004 crossbars can be cascaded in multiple connections to any depth

without loss of signal, each crossbar does introduce an average 1.75 bit signal delay

which arises when the output of each multiplexer is synchronized with an internal high

speed clock and regenerated at the output buffer [Ref 19:p. 1]. This delay becomes

significant when more than two C004s are connected in series due to the link protocol

described in Chapter II. In the T800 Transputer, maximum transmission rates are

accomplished by transmitting the acknowledge packet to the sender as soon as the first

few bits of the 11 bit data packet is received. Therefore, the sender will be able to send

the next data packet without delay since it would have already received the acknowledge

for the current data packet. Communications through a series of C004s will cause a

signal delay of approximately four to five bits, which in turn causes a gap to occur

between consecutive data packets since the sender must wait for the arrival of the

acknowledge. A single C004 inserted between two linked Transputers which fully

implement overlapped acknowledges causes no reduction in bandwidth [Ref 19:p. 5].

3. Software Commands

Commands and responses are transmitted to the C004 via the ConfigLinkOut

and ConfigLinkIn lines from a controlling Transputer. All communications are in sets of

one, two or three bytes. Byte values zero through 31 are used to reference a crossbar link

number. Bytes values zero through six are used to specify one of seven commands listed

in Table 3.1 [Ref 19:p. 3]. If a message of an unspecified configuration is sent to the

C004 the effect is undefined.

36

TABLE 3.1

C004 CROSSBAR CONTROL COMMANDS

CONFIGURATION COMMAND FUNCTION

COMMAND [Bytes]

[0] [input] [output] Connects specified input to output (unidirectional).

III [link)] [link2) Connects link) to ink2 by connecting the input of link] to the
output of link2 and the input of Unk2 to the output of link].

[2] [output] Enquires which input the output is connected to. The C004
responds with the input link byte designation. The most
significant bit of this byte indicates whether or not the link is
actually connected (bit set high) or disconnected (bit set low).

[31 Essentially a pause command which should be sent immedi-
ately after a connection is made to ensure the links are ready
to accept data. Necessary only if the connection will be used
immediately upon established.

[4] Resets all links on the C004 to disconnected status.

[5] [output] Specified output is disconnected and held low.

[6] [linkl] [link2] Disconnects the output of link) and the output of link2.

B. B012 TRANSPUTER MODULE MOTHERBOARD

The IMS B012 is a module motherboard of standard eurocard design (220 mm by

233.5 mm) which contains a collection of fixed and removable components. Two C004

crossbars (designated IC2 and 1C3, discussed in the following section) and a T212

Transputer (ICI) are installed on the motherboard, and 16-pin slots are provided for a

maximum of 16 removable Transputer Modules or TRAMS. TRAMS are available in a

variety of configurations and sizes, some requiring more than one slot thus reducing the

number of TRAMS allowed on the board. According to Watson [Ref. 20:p. 2], the

design goals of the module motherboards with crossbars are:

" To be abe to build systems with any number of Transputer modules in any
combination or type or size;

" To be able to build a variety of different kinds of networks (e.g., arrays, trees,
cubes, etc.):

37

* Enable any number of motherboards to be chained together;

* Make Transputer link connections configurable by software;

* To be able to run test and applications programs on Transputers without first
configuring links;

" Provide a standard hardware interface to configuration and applications software;

" Make the Transputer hardware independent of the host system

Two 96-pin edge connectors, P1 and P2, provide connections between the B012

components and other Transputers, as well as power supply to the B012. The TRAM slot

and link edge connector arrangements are shown in Figure 3.3.

Slot 1 Slot 2

Slot 5 Slot 6 PI

Slot 9 Slot 10
1 T20

Slot 13 Slot 14

Slot 0 Slot 3
K1 Slot 4 Slot 7

Slot 8 Slot 11 P2
Slot 12 Slot 15

Figure 3.3. INIS B012 Slot And Edge Connector Arrangement

1. Motherboard Configuration

Connecting pins for each slot provides power, reset and clock signals to the

TRAM and connects the links of the TRAM mounted Transputer to the motherboard. In

general, TRAM link I's and link2's are connected head to tail in a bidirectional pipe, and

38

linkO's and link3's are hardwired to the C004's. When not all slots are populated with

TRAMs, or when TRAMs larger than one slot are installed jumpers must be placed in the

unused connectors to maintain connectivity of the pipe. [Ref. 21 :p. 2]

Some flexibility is provided by jumper block KI which can break or rearrange

the pipe into other configurations. For example, a four-by-four node matrix can be

created by breaking the 16 slot hard-wired pipe into four segments by opening the

appropriate KI jumpers, then completing the mesh using crossbar connections. Instead

of leaving the KI jumpers open as in the mesh, a four-by-four node torus can be created

by looping each four-Transputer segment into a ring, and making additional crossbar

connections to loop the perpendicular dimensions. Variations in pipe configuration and

C004 control can also be made via jumpers on the P2 edge connector. Figure 3.4 shows

the 16 slots in a pipe with the variable connections via KI and P2 identified. A specific

pin-out of the KI jumper block can be found in [Ref 21:p. 36].

- To CO04s "-

={= (Omitted elsewhere for clarity)

o0 L, inks To CO04s ,
P22

43 K1

Slot 0 Slot 1 Slot 2 Slot 3

K1

Ki

Figure 3.4. B012 Configu ration Variations Via P2 and K1 Jumoers

39

Link I on slotO is wired to P2 and is called PipeHead, and link2 on slot 15 is also

wired to P2 and called PipeTail. By properly installing the jumpers in unused slots

PipeTail will then connect to whichever slot is filled last on the B012. By connecting the

pipe heads and tails from multiple B012s together, a large pipeline of TRAMs can be

created.

In a standard configuration, slotO is the first TRAM in the pipe and its linkO and

link3 are connected to the C004s. Multiple B012s may be connected in another pipe

involving the T212s. However, slotO can be accessed directly via P2 and KI instead of

the C004s for specialized applications in which the TRAM in slotO is used to control the

T212 or the remaining TRAMs on the B012. Thus, multiple B012s can be chained

together connected via the Transputer in slotO instead of the T212s. Normally, each linkO

and link3 of all slots are connected to the two C004s per the arrangement shown in

Figure 3.5. [Ref 21:pp. 5-6]

As shown, the link output signals from all the linkO's on all slots are connected

to the 16 inputs of one C004. The link input signals from all the link3's on all slots are

connected to 16 outputs of the same C004. The remaining 16 inputs and 16 outputs of

that C004 are connected to the edge connector P1. The other C004 is connected

similarly, except that 16 of its inputs are connected to the outputs of all link3's on all

slots, and 16 of its outputs are connected to the inputs of all linkO's on all slots. The

remaining inputs and outputs are connected to P1. [Ref 2 1:pp. 5-8]

4(0

Edge Conncorinks~

IMS C004

Pipe Head C UlI P ilLUokion / _ UnKo 1W Unln 1::3UnO

L nkOurtl Slot 0 2 b ok S10115 2

M~ E_

IMS C004

Edge Connector Links t
Figure 3.5. Lint, Organization Between B012 Slots and C004 Crossbars

The B012 link switching organization using C004s does not allow complete

freedom to connect an' link to any other. [Ref 21:p. 101 The result of this connection

scheme does allow any linkO on any module may be routed via the C004s to any link3 on

any module in just one programmed connection on each C004. A link between any linkO

to another linkO, or between a link3 to another link3 (henceforth defined as a "like-link")

may also be established, but only with the use of two programmed connections on each

C()4 and two appropriately selected link cables on edge connector P1.

Edge connector P1 has three columns of 32 pins each: the pins in one column

are all ground, another column are all link inputs, and the third are all link outputs. These

32 connections represent half of all available connections on the two crossbars, with the

41

remainder hardwired to the slots. Therefore, each row of three pins provides a

bidirectional link, and the 32 rows can be connected as the user desires to fulfil the needs

of the application at hand. The 32 rows are numbered from 0 (at the top) to 31. Figure

3.6 shows the connections routed to P1 and P2. [Ref 21 :pp. 9-10,26]

Edge# C4LinkOut Link# C4LinkIn

0 C4-1 0 ,4-0
1 04-1 2 04-0 P
2 Q4-0 4 04-1
3 C4-0 5 04-1
4 04-0 6 04-15 04-0 3 C4-1 Pipe Sloto Pipe6 C4-0 1 C Head LinkO Tail6 G4-1 1 4-0

7 Q4-1 7 04-0
8 C4-1 29 C4-0
9 Q4-1 30 Q4-0

10 C4-0 31 C4-1
11 C4-0 28 C4-1 Cnfg 0004 Cnfg
12 Q4-1 24 C4-0 Up (Link Down

13 C4-0 25 C4-1 22)
14 Q4-0 26 Q4-1
15 C4-1 27 Q4-0
16 C4-1 17 C4-0
17 G4-0 19 C4-1
18 C4-0 22 C4-1
19 G4-1 23 04-0
20 C4-0 16 C4-1
21 04-0 18 04-1 Ki Sub
22 04-1 21 C4-0 Syst
23 C4-1 20 C4-0
24 C4-1 10 C4-0
25 C4-1 13 C4-0
26 04-1 14 04-0
27 Q4-1 11 C4-0 Up Down
28 C4-0 8 C4-1
29 C4-0 9 C4-1 -
30 C4-0 12 Q4-1
31 C4-0 15 C4-1

P1 P2

Figure 3.6. B012 Edge Connectors PI And P2

42

A module motherboard has Up, Down, and Subsystem ports on the P2 connector

which provide hierarchical control. A board is able to control a subsystem of other

boards by connecting its Subsystem port to the Up port of the next board. By connecting

the Down port of the first subsystem board to the Up port of the next a daisy chain of

boards is established. At any point down the chain, a new subsystem may branch by

starting with a Subsystem port. This hierarchy is shown in Figure 3.7. B012 architecture

also provides flexibility by allowing different sources of reset initiation for different

components. For example, if there are n slots on a motherboard, modules in slots one

through n may be controlled from either the Up port of the board or may be part of a

subsystem controlled by the module in slotO. [Ref 2 0:p. 9]

Master Controller

UpUpU

Down Subsys Down Subsys Down Subsys

Up Suss Up s

Down Subsys Down Subsys

Figure 3.7. Transputer Control Hierachv

2. T212 Transputer Crossbar Controller

A T212 Transputer is used to control the two C004 crossbars on the B012

motherboard. The T212 has four links of which linkO and link3 are connected to the

C004s. LinkI and link2 are routed to the P2 edge connector, labelled ConfigUp and

ConfiDown for access to external systems or routing back to other available connections

on the BO 12 such as PipeHead and PipeTail. Configuration data for the C004 is fed into

4 3

one of the T212's links (ConfigUp) from an external Transputer or from one of the

TRAMs on the B012. Figure 3.8 shows the link connections from the T212

[Ref 21:pp. 10-12]

C onfigup

Linkl

C004-0 LinkO T212 Link3 C004-1

(IC2) 03

SUnk2

ConfigDown

Figure 3.8. T212 C004 Controller Link Organization

The T212 Transputer follows the description in Chapter II above on the T800

with some key exceptions. The T212 is a 16 bit processor with only two kilobytes of

on-chip memory. Although the T212 can address additional memory externally, there are

no provisions on the B012 for additional memoi y. (Another Transputer model, the T222,

is pin compatible with the T212 and holds four kilobytes of on-chip memory). Due to the

16 bit architecture a maximum of 62 kilobytes of external memory can be accessed

IRef 9:p. 318] via separate 16 bit data and address signal paths.

As a controller for the C004s, the T212 is intended to hold a small program

which directs the connections made by the C004s. This program can run independently

of external inputs, or can receive direction from other Transputers via ConfigUp and

ConfigDown. By making appropriate jumpers on the P2 edge connector, the T212 can be

44

included in the pipe formed by the TRAMs on the B012. A standard configuration for a

multiple B012 board system is to form a daisy chain of control from a host via ConfigUp,

and connecting subsequent ConfigDown to ConfigUp connections. [Ref 21 :p. 12]

3. Transputer Modules

INMOS Transputer modules (TRAMS) are designed to form the building blocks

of parallel processing systems in which more than the on-chip memory is required. They

consist of printed circuit boards in a range of sizes which typically hold a Transputer,

some memory, and perhaps some application specific circuitry. A TRAM needs only a

five volt power supply, ground and a five MHz clock to operate. These are supplied to

the module through pins connecting the TRAM to the motherboard. Other pins carry

signals for the Transputer's links and reset, analyze and error signals. [Ref 21:pp. 12-141

IMS B401 is the designation of the TRAMs used in this project. Each B401

holds a T800 Transputer and 32 kilobytes of static random access memory and connects

to the motherboard using one slot via two rows of eight pins each. Sixteen B401 TRAMs

may be placed on one B012 motherboard for a total of 16 Transputers and 576 kilobytes

of memory. Figure 3.9 shows the pin arrangement of a B401 TRAM. Full details of this

particular TRAM can be found in INMOS product information [Ref. 22].

ol Voltage Groun

o LinkSpeedA T800 NotError o
0 LinkSpeedB Reset o
0 CIockin Analyse a

Figure 3.9. B401 TRAM Pin Arrangement

45

C. B004 DEVELOPMENT BOARD

1. General

Transputer components form a unique hardware environment which is not

immediately compatible with most existing personal computers (PC) or main frames

upon which development work is accomplished. The IMS B004 development board was

designed to meet these needs by interfacing a Transputer memory with an IBM type

personal computer allowing the software developer to edit, compile and test software

using the PC as a host. Figure 3.10 shows a block diagram of the B004 development

board which fits in a full length eight bit slot of an IBM compatible PC. [Ref. 23]

Subsystem .DControlUpDw

Buff ered
Link

0002 Buff ered

7 pcineiae Subsystem

C Interface

Figure 3.10. IMS B004 Transputer Development Board Block Diagram

The B004 contains a T414 Transputer, two megabytes of memory and circuitry

to connect with the host computer. This connection is made via one of the Transputer's

four available links and typically through linkO. This leaves the remaining three links to

connect to additional Transputers in the host PC or in other locations. When the B004 is

46

used as a host or root Transputer for a larger system, compiled code is booted via the

B004 to the other Transputers along link connections. The TDS may prompt the user for

the B004 link number being used to boot other Transputers. Once the first link is

established, the TDS relies on the the configuration information provided in the

PROGRAM fold to continue routing compiled code to the assigned Transputers. The

order of external Transputers booted follows the order in which they textually appear in

the PROGRAM's configuration fold. Each Transputer to be booted is first reset by the

host, booted with its assigned compiled code, then used to boot the next Transputer in the

system. This process repeats as necessary, foliowi, g configuration fold link definitions,

until all external Transputers are booted.

Backplane connections are provided for link hook-ups and subsystem control

(Up, Down, and Subsystem) as discussed for the B012. Jumpers are also attached at the

backplane to connect one of the links and the susbsystem connection to the host PC. In

this case, the host PC acts as the master controller of all Transputers in the network.

Additional Transputers daisy chained to the B004 are controlled hierarchically via the

Down connection. [Ref 23:p. 10]

B004 interface to the host PC includes access to the PC's resources such as

monitor and mass storage. Depending on the compiler used, coded library routines may

be available to display information on the monitor or store computed results on the hard

disk. Transputer Development System D700 version D was used for this project to edit

and compile the Occam program code. Extensive use of library calls to predefined

display subroutines was made in order to facilitate monitoring and debugging of code.

47

2. T414 Transputer

The B004 development board used contained a single T414 Transputer. With

few exceptions, most of the information contained in Chapter II above applies to the

T414 model. Unlike the T800, the T414 does not include an on-chip floating point unit

and only holds two kilobytes of on-chip memory. [Ref 9:p. 179]

T414 link communication protocols are the same as T800, however, the B004

T414 does not send the ACK packet immediately upon receipt of the first few bits of

incoming data. Instead, the B004 T414 waits until the entire data packet is received

before the ACK is sent. Although the T414 does support the high speed 20 megabits per

second data transmission rate, other components on the B004, particularly the PC

interface [Ref 2 3 :p. 14], restrict the T414 to ten megabits per second link speed. Since

the T414 is used to intercept and test or record communications from the T212 occurring

along the link controlling pipe of the message exchange, the entire system data flow rate

is maintained at ten megabits per second.

D. MESSAGE EXCHANGE HARDWARE CONFIGURATION

A complete view of the message exchange hardware is shown in Figure'3.11. This

diagram shows the relationships between the key components, including the C004

crossbars, crossbar controller, TRAMs, and the B004 used in monitoring the system.

Four TRAMs in slots zero through three are shown corresponding to the hardware used

for this project. The numbers on the left and right sides of the figure show the

connections between the edge connector P1 and the actual link designations on the

C004s. (The numbers under "P1 #" are pin row numbers on the edge connector). An

arrow accompanies each pair of numbers indicating its communication direction: pointing

towards the C004 for Linkln and away from the C004 for LinkOut.

48

1 L jI Link Coarld Only

T212 004 Commans Only

L3 LO -007

C004-1 C004-0
Edge Edge
P1 #=L# L#=P1 #
00 <00 L23In K1i 00 <00
01 < 02 Li 02 < 01
02 > 04 2 Slot0 04 > 02
03 > 05 L22Out-K LO 05 > 03
04 > 06 L-- K1-- L23Out 06 > 04
05 > 03 L2 03 > 05
06 < 01 1 1 01 < 06
07 < 07 'L22n 07 < 07
08 < 29 L21n 29 < 08
09 < 30 L1 30 <09
10 > 31 slot 1 31 > 10
11>28 L50ut 28 > 11
12 < 24 L2Out 24 < 12
13 > 25 L2 25 > 13
14>26 26 > 1414 • 26No L51n 27<5
15 < 27 27L<027n5
16 < 17 17 < 16
17 > 19 Ll 19 > 17
18 > 22 ot 2 22 > 18
19 < 23 L4Out L 0 23 < 19
20 > 16 LOOut 16 > 20
21 > 18 L2 18 > 21
22 < 21 21 < 22
23 < 20 _ L41n 20 < 23
24 < 10 10 < 24
25 < 13 Ll 13 < 25
26 < 14 14 26
27 < 11 L19Out 11 < 27
28>08 Ll7Out 08 > 28
29 > 09 L2 09 > 29
30 > 12 12 > 30
31 > 15 7 L191n 15 > 31
<"= Out ">" = Out

In < = In

Figure 3.11. Message Exchange Hardware Configuration

49

IV. MESSAGE EXCHANGE FUNCTIONAL DESCRIPTION

A. OVERVIEW

Multiple processors connected in some topology can be described as belonging to

one of three configuration categories: static, semi-static, and dynamic [Ref. 24:p. 124].

In the static topology, the interprocessor connections are fixed for the duration of the

application. Any significant change requires system down time and hardware modifica-

tion. Semi-static topologies allow for system reconfiguration at synchronized points as

the application progresses. For example, one topology may be best for loading data, then

once all data is loaded, all processors switch to a second topology better suited for

processing the data. A third topology may later be used to output or display the results.

The Esprit Project P1085 [Ref 24] discusses a large scale, semi-statically reconfigurable

Transputer network which uses crossbars (72 x 72), a specialized control bus, and a three

layer operating system.

Most flexible of the three is dynamic configuration in which any processor can be

dynamically connected to any other processor upon request while the application is

running. Harp [Ref 24:p. 124] states that dynamic switching allows dynamic load

balancing, fault tolerance and offers potential benefits for efficient implementation of

high level languages. Although the greatest flexibility can be achieved with complete

interconnectivity, dynamic configuration also incurs the greatest overhead in system

maintenance.

The message exchange program as developed here is intended to provide maximum

flexibility in data transfer within a dynamically reconfigurable Transputer network. As

explained earlier, each Transputer has four links with which to communicate to similarly

50

equipped components. If a given Transputer requires communication to more than four

components, data must be routed through the intermediaries until it eventually arrives at

the intended destination.

The message exchange developed here uses the C004 crossbars on a B012

motherboard to establish direct connections between requesting Transputers. With this

hardware, a process using one link of a TRAM can be directly connected to any of the

other 31 TRAM links on a fully populated B012 (that is, with 16 TRAMs). Additional

code was also added to detect and recover from failed external links between crossbars

used in making these connections.

Hill [Ref 19] served as the basis for this program, however, significant modifications

were made to complete the partial code provided and adapt it the hardware design of the

B012. The example cited was designed around a proposed use of a single C004 and

employed all Transputer components as traffic routers for external processors. The

program here uses both C004s of the B012 and allows application code to be embedded

in each TRAM for production work, with the remaining code serving as a communica-

tions kernel which obtains the requested connections status.

A functional description of the message exchange in both normal and link failure

operations is discussed below, followed by a detailed explanation of the code in the

Controller and TRAM modules. A complete listing of all message exchange code is

provided in Appendix A. Code used in program development and testing is provided in

Appendix B. Appendix C contains code for a visual display of message exchange

activity which was used extensively in system debugging.

51

B. SYSTEM OPERATIONS

1. Link Control Command Description

Communications on the link control pipe consist of three-byte packets: one byte

each for link command, source, and destination [Ref 19:pp. 16-17]. There are six

commands issued by either the controller or any of the managers to operate the crossbars

and thus dynamically control the network topology and recover from failed links. All

commands are predefined in a library of constant definitions made available to the

appropriate procedures.

" REQ (link request) issued by a Manager (process on a TRAM monitoring link
control commands) requesting the creation of a new link for one of its two Agents
(processes on a TRAM performing data output) as a source.

" ACK (request acknowledge) issued by the Controller (process on T212 link
crossbar controller) when a requested link is successfully established, thus
informing the Manager the new link is available.

• REL (link release) issued by a Manager when an existing link is no longer
needed. After communications are completed and the specified path no longer in
use, the link resources should be freed for other users.

" BRK (release acknowledged) issued by the Controller when the link has been
released. This allows the Manager to repeat the cycle and request a new link to
the next desired destination as necessary.

* ABT (communications abort) issued by the Manager when an attempted
outbound communication has exceeded a watchdog timer, thus signalling a
communication failure.

* REI (link reinitialization) issued by the Controller to synchronize reinitialization
of both directions of both ends of the affected link.

2. Link Failure And Recovery Procedures

Under routine circumstances, that is, using only the Occam "!" and "?"

primitives for external link communications, a hardware failure of the external link used

may cause the Transputers involved not only to lose data, but also to hang entirely

causing a need for a hardware reset. Transputer deadlock occurs as soon as a data packet

52

is sent along a link and its corresponding acknowledge packet is never received. (Or

conversely, depending upon when the failure took place, an acknowledge packet is sent

and the next data packet never arrives). Although a crossbar can be employed to switch

in a "good" connection to replace the failed wire, the Transputers in use are still stuck as

before while its link engine is waiting for a transmitted but lost packet which will not be

regenerated by either Transputer.

Recovery of a failed link and the Transputers involved, employs Transputer

Development System procedures in the reinit library. These library procedures imple-

ment input and output processes in lieu of the standard "" and "?" primitives, and can be

made to terminate the process even in the presence of a communication failure. The five

library procedures and their associated parameters are as follows: [Ref 9 :p. 271]

PROC InputOrFail.t (CHAN OF ANY c, []BYTE message,
TIMER time, VAL INT t,
BOOL aborted)

" PROC OutputOrFail.t (CHAN OF ANY c, []BYTE message,
TIMER time, VAL INT t,
BOOL aborted)

* PROC InputOrFail.c (CHAN OF ANY c, []BYTE message,
CHAN OF INT kill, BOOL aborted)

* PROC OutputOrFail.c (CHAN OF ANY c, []BYTE message,
CHAN OF INT t, BOOL aborted)

* PROC Reinitialise (CHAN OF ANY c)

Input/OutputOrFail.t procedures take the following parameters: the data

channel c which -s to be guarded for faults, the actual data variable message, a timer

channel time and a delay value t in clock ticks. The procedures return the boolean value

aborted equal to true if the communication failed to complete in the allowed time

interval t. If the communications are successful, the data is passed and aborted is set to

53

false. In either case, although the communications may fail, the library procedure al'w'ays

successfully terminates, thus protecting the system from failure. By using a timer to

determine successful communication completion, these procedures are used to detect a

failure and thus initiate recovery actions. Communication failure detection functions are

assigned to the Agent process which is responsible for conducting data output on each

TRAM in the message exchange. Figure 4.1 shows a state diagram tracing through the

sequence of control commands involved in both normal and fault conditions.

Link Busy

Request Not Able
New Link o ItRE!Q)" To Make
Cycle Now Link
Repeats Now. Try
(If Desired) •ink Again

• •Made. New

e Data /Link
; ~Xfer F/''- - ailed \

Figure 4.1. Link Control Command .State Diagram

In situations where a watchdog timer is not sufficient to detect communications

failure, but where the failure can be detected by other means, the Input/OutputOrFail.c

procedures can be used. Instead of reporting a failure based on a timer, this pair of

procedures takes an additional external signal, an integer kill, to force the current

communications to terminate. Since the data output routines in the Agent processes

5-4

detect and report a link failure, the communications input of the User processes use these

external "kill" procedures to terminate a failed communication based on link control

signals from the appropriate Agent via the link control pipe. By relying upon only the

communication source (output) end of the link to detect link failures, timing difficulties

and redundant fault signals inherent in the message exchange system are avoided.

Finally, the Reinitialise procedure, which takes as its only parameter the

communication channel c involved, actually resets the failed link engine allowing them to

be reused. Reinitialise should be called only after both directions of both link engines

are terrrinated (by the above procedures) and no further communication is attempted by

them. Before a reset link engine is tasked with conducting communications, the crossbar

controlling Transputer should have assigned a working connection to correct the fault.

Repeated failures, however, are tolerable and the sequence of events in link recovery

repeats until the desired communications are completed successfully using a working

connection.

3. Link Control Command Action Summary

Table 4.1 describes the life cycle of the various controlling commands as they

are passed among the key modules in the pipe. Origination of each command is straight

forward and not flexible, given the requirements of the system. However, termination

(removal from pipe) of commands was altered several times during software develop-

ment. In all cases possible, as soon as the command has travelled along the pipe to

complete all its functions, the last station taking action on the command removes it from

the pipe. When several components take action on a single command (link reinitializa-

tion, for example), the command parameters may be modified allowing the terminal

component to remove the command without fear of preventing the flow of needed control

information.

55

TABLE 4.1

LINK CONTROL COMMANDS AND PROGRAM MODULE ACTIONS

CMD CONTROLLER MANAGER
Link. With Source Involved With Dest Involved

REQ If link made: Link.REQ Originates Link.REQ passed on.
Link.REQ Consumed, prompted by Agent, which
LinkACK Originates. is itself prompted by first
If link not made: byte of data message from

p Link.REQ Recycled. User.

ACK Link.REI Originates. Link.ACK passed on, Link.ACK passed on,
Link.REI Consumed. source byte set to nil, notify destination byte set to nil,

Agent to transmit data. notify User to receive
Link.ACK Consumed if data.
destination byte already nil. Link.ACK Consumed if

source byte already nil.

REL If link broken: Link.REL Originates Link.REL passed on.
Link.REL Consumed, based on request from
Link.BRK Originates. Agent upon successful
If not broken: completion of data trans-
Link.REL Recycled. mission.

BRK Link.BRK Originates. Link.BRK Consumed, noti- Link.BRK passed on.
Link.BRK Consumed. fy Agent link is broken.

User passes next data block
to Agent.

ABT Link.ABT passed on. Link.ABT Originates Link.ABT passed on,
Link.REI Originates. based on notification from notify User to abort input
If new link made: Agent of failed communi- of data.
Link.ACK Originates. cation. Note: destination User
If new link not made: Link.ABT Consumed when notices link failure onl
Link.REQ Originates. command makes complete when informed via the

circuit, ensuring destination command pipe. Failure
informed of failure. detected by source

Agent.

REI Link.REI Originates. Link.REI passed on, source Link.REI passed on, des-
Link.REI Consumed. byte set to nil, notify Agent tination byte set to nil,

to reinitialize link. notity User to reinitialize
Link.REI Consumed if link. Link.REI Con-
destination byte already nil. sumed if source byte al-

ready nil.

56

C. CONTROLLER MODULE

The Controller code executes in a single process which resides entirely on the T212

C004 controller installed on the B012 motherboard. In the configuration established for

this project, the T212 is connected in a unidirectional pipe formed by the TRAMs on the

motherboard. Link request and status information is circulated in the pipe until received

by the Controller, at which time appropriate action is taken to either connect or

disconnect a requested data path, or to recover from a reported failed path. The

Controller directs the crossbar resources of the B012 ensuring that all requests are

fulfilled, if physically possible, and avoiding potential system deadlock caused by partial

allocation of resources.

The Controller code consists of a main section which monitors the link control pipe

and takes action by calling one or more of its four subprocedures, while also managing

connection resources and status. Subprocedure's functions will be discussed individually

followed by an explanation of the main code for the Controller.

1. Subprocedure: reset.or.nil

When the enquire command and the output link designation of interest is sent to

a C004, the response is the byte designation of the input link currently connected (see

Table 3.1). The left most bit of the response byte (bit seven) indicates that link is active

when set high, or inactive (disconnected) when set low. To define one of the 32 possible

connections to any given output link, five switches must be -et. Their status is indicated

by the five lower bits of returned byte (bits four through zero). When a programmed

connection is broken, only bit seven is changed (set low); the selection bits are altered

only when a new link is established. Bits six and five of the enquire response byte are

not used.

57

Since past connections to a given link are of no interest to this program, the

reset.or.nil procedure will return byte.nil if bit seven of the enquire response byte is

low, thus indicating that the connection is inactive and free for assignment. If bit seven is

high (indicating an active connection), reset.or.nil returns the current connected input

link designation by resetting bit seven of the enquire response byte and leaving bits four

through zero intact. Setting bit seven low is accomplished using the Occam "><" bitwise

exclusive-or operator on the hexadecimal value 80 which isolates the left most bit of the

C004 enquire response. This subprocedure is repeatedly called by other subprocedures as

well as the main code.

2. Subprocedure: c4.cmd

A small code sequence used in communicating with the crossbars is used

repeatedly throughout the Controller and is coded as a subprocedure for clarity and to

improve memory usage efficiency (recall that only two kilobytes of memory are available

on the T212). C4.cmd sends a command followed by zero, one or two parameters (as

appropriate for the command: see Table 3.1) to a selected crossbar. The choice of

crossbar command to implement is determined by the value of the parameters received.

Upon completion, the returned byte is placed in parameter b3. The Occam keyword

VAL coupled with other type identifiers, defines the parameters that follow to be

constants for the duration of the subprocedure.

PROC c4.cmd (CHAN OF ANY to.x, from.x,
VAL BYTE cmd, bl, b2, BYTE b3)

If the command involves a change of link status, c4.cmd code proceeds to

immediately query the crossbar and verify the requested status change, for example: that

the requested connection is created as desired. The result from the enquiry is then run

58

through the reset.or.nil subprocedure which transforms the crossbar response into a form

indicative of the task accomplishment. For example, if a link was to be broken the value

returned by c4.cmd (via use of reset.or.nil) would be byte.nil indicating a free link.

3. Subprocedure: get.current.tie

No program defined tables or records are kept by the Controller with regard to

link connection status. When a connection status must be determined, for example, to

verify a link is free prior to making a connection, the C004s are consulted directly. As

discussed above, the enquire command is used to establish current connections. By

sending the command with the byte designation of the output link of interest, the C004

will respond with the byte designation of the currently connected input link. Reset.or.nil

is then called to strip the high bit from the response if present, or change to byte.nil if

not.

Since the five selection bits (four through zero) of the enquire response byte

change only when a new link connection is ordered or when the entire C004 is reset,

current status is always available and accurate. By relying strictly on the hardware

switch positions internal to the C004s, potential errors in status table maintenance are

completely avoided. Processor effort needed for C004 status enquiry is comparable to

status table look-up and maintenance since all Controller code is sequential, therefore no

competition exists for use of the links between the T212 and the C004's.

All subprocedures dealing with the C004s are passed four channels: to.co,

rrom.co, to.cl, and from.cl, which are the communication paths between the T212 and

the C004s. The get.current.tie subprocedure is also passed the source or destination link

of interest, and it returns either the designation of the current connection, or byte.nil if

the link of interest is inactive.

59

PROC get.current.tie (CHAN OF ANY to.cO, from.cO,
to.cl, from.cl,

VAL BYTE in.link
BYTE link.tied.to)

Initially, get.current.tie must determine wnich C004 to enquire since link0's

and link3's are connected differently (see Figure 3.3). This is complicated by the

numbering scheme of the C004 links and the slot numbers that are hardwired to them.

Therefore, a translation array is used to convert the C004 link designation to a slot

number. In this program, link0's are numbered 0 through 15, and link3's are numbered

20 through 35.

It should be recognized that a consistency between the C004 wiring schemes is

relied upon to perform these operations. Regarding B012 organization, Figure 3.3

showed that for a given TRAM linkO or link3, the input is routed to one C004 and the

output to the other. Although different C004s are involved, the C004 link designation

used is the same. This is valuable since the enquire command responds only with the

input link connected to the output link in question. There is no enquire to determine what

output is connected to a given input. Therefore, the connected output link is assumed to

be the same link designation (although different C004s) as the input link. This

assumption has proved reliable since all connections are accomplished for both input and

output directions in tandem.

4. Subprocedure: make.conn

When the main code directs the establishment of a connection, the make.conn

subprocedure is called. All actions necessary to complete the requested connection are

contained in this s ibprocedure. Each routine includes a returned boolean value conn.ok

which provides connection verification results. Make.conn is called with the four C004

channels, source and destination bytes, and returns only the boolean conn.ok:

60

PROC make.conn (CHAN OF ANY to.cO, from.cO,
to.cl, from.cl,

VAL BYTE in.source, in.dest,
BOOL conn.ok)

Three distinct cases must be handled by this procedure: connect any linkO to any

link3, connect any linkO to link0, and connect any link3 to link3. The f'ust, linkO to link3,

is straight forward since only one connection must be made on each C004 and the

procedure is symmetric for each link. Figure 4.2 shows how the crossbars are used to

connect any linkO to any link3 on the B012. Note that the linkO and link3 involved can

even be of the same Transputer. After enquiring the C004s with the source and

destination links of interest, make.conn orders the connection if both links involved are

free. Otherwise, the procedure returns false for conn.ok. The remaining two cases,

however, are much more complex in that two connections on each C004 must be used as

well as an external edge connector jumper. Since like-link cases are similar, an internal

subprocedure make.0033 is used.

C004-1 C004-0

-- -- Hardwired Connections Between TRAMs and CO04s
................. Software Controlled Connection in C004 Crossbar

Figure 4.2. Crossbar Connections To Connect Any Link0 To Any Unk3

61

Although the C004s can provide immediate status of all internal connections,

there is no direct way to establish placement of the P1 edge connector jumpers on the

B012. Therefore, the user supplies a table listing the combinations of edge connectors to

be used to satisfy either linkO to linkO or link3 to link3 requests. Sixteen jumpers can be

arranged on the P1 edge connector pins, but not any jumper arrangement will satisfy

either type of connection. Due to the design of the B012, only specific combinations may

be used to complete a like-link connection. Table 4.2 shows one selection of possible

jumper arrangements.

For this project, eight jumpers were selected for linkO to linkO connections and

eight for link3 to link3. The user provides values in two byte arrays edge.a and edge.b in

which the values for a specified index form a pair of edge connectors defining the

location of a jumper. For example, edge.a[3] and edge.b[3] define connections 25 and

26, respectively. This tells make.0033 that these C004 links can be used to jumper

across from one C004 to the other to establish a connection between two linkO's.

TABLE 4.2

JUMPER PLACEMENT FOR C004 TO C004 CONNECTIONS

For LinkO To LinkO: For Link3 to Link3:

Connect P1 Row: To P1 Row: Connect P1 Row: To P1 Row:

2 3 0 1
4 5 6 7
10 11 8 9
13 14 12 15
17 18 16 19
20 21 22 23
28 29 24 25
30 31 26 27

The user also provides two integer values: edgeO.ct and edge3.ct which are the

number of possible jumpers available for each type of connection. The sum of edgeO.ct

62

and edge3.ct is the total number of jumpers installed. The first edgeO.ct listings in the

two byte arrays are for linkO to linkO connections, and the subsequent edge3.ct pairs are

for link3 to link3 connections.

A boolean table, edge.ok, maintained globally in the Controller module, tracks

reported status of each edge connector. When a TRAM reports an edge connector has

failed, the corresponding index in edge.ok is set to false. Only edge connectors with a

corresponding edge.ok value of true are used to complete like-links.

With the jumper information provided, the make.0033 subprocedure can

proceed to establish a connection between two like-links. Figure 4.3 shows the

necessary crossbar and jumper connections to accomplish this. As each crossbar

connection is made the procedure immediately enquires the status of the assumed newly

formed links and checks the returned answer against what is expected. Any deviation in

comparing expected from actual status is treated as an incomplete connection and the

make.conn procedure returns FALSE for the value conn.ok.

5. Subprocedure: break.conn

Procedure break.conn works similarly to make.conn in that the same three

cases of link combinations must be handled, and the two cases involving like-links are

handled with an internal subprocedure. Significant difference is that the C004 command

to disconnect links, c4.disconn.output, is sent instead of the command to make

connections. Enquiries of link status are still conducted and the returned bytes are sent to

the reset.or.nil procedure. Successful termination of a link is evidenced by all links

involved showing the byte.nil status which shows that the links are now free for their

next assignment.

63

004-1 C004-0
B ases, i -

As

"0 3\o A

SB

-Hardwired Connections Between TRAMs and C004s
............... Software Controlled Connection in C004 Crossbar
a .a a0 Bidirectional Link Cable on Edge Connector (AB to AB)

Figure 4.3. Crossbar And .umoer Connections To Connect Two Like-Links

It should be noted again that there are no link status tables to be maintained or

updated. In all cases, link status is obtained directly from the CO04s involved to ensure

accurate assignment and freeing of crossbar connections.

6. Main Controller Code

After variable initialization, the Controller module enters an infinite loop which

constantly receives the next link control bytes and takes the appropriate action. Program

structure is shown below followed by details of key folds.

64

SEQ
..initialize C004s, clock,

and edge.ok status array
WHILE TRUE
ALT

from.pipe ? token; source; dest
IF
token = link.req

action for connection request
token = link.rel

... action for connection release
token = link.abt

-action for failed link
token = link.ack

-.action for recycled link acknowledge
token = link.brk

**. action for recycled link break
token = link.rei

... action for recycled link reinitialize
otherwise

* action for unrecognized command
(clock interval reached and
failed re juest count limit exceeded)
... reset a edge.ok status to TRUE

a. Action For Link Request

Upon receiving a link request, the status of the requested links are

determined using get.current.tie. If the returned status for both source and destination

are byte.nil (indicating free links), the requested connection is established using

make.conn, and a link acknowledge (!ink.ack) packet is sent to the pipe to inform the

TRAMs involved that a connection is made and data can be transmitted. If a requested

link is currently busy, the link request is recycled through the pipe in hopes that the

resources will be freed for reassignment by the time the request returns. Using the link

control pipe as a waiting queue for failed requests ensures that the request will not be lost

while it is waiting for resources, and also minimizes storage and processing requirements

of the Controller code on the T212.

65

If the link request could not be fulfilled due to lack of available working

good" edge connectors, a counter is incremented tracking the number of such failed

requests. When the req.cnt reaches a preset value, the edge connector management

algorithm begins searching for repaired resources. This is explained in more detail

below.

b. Action For Link Release

A link release command is a TRAM request that an existing link be freed

for new use as needed. A single call to the break.conn terminates the connection and

frees the resources. Although there is no resource conflict preventing a link from being

disconnected, if the crossbar does not respond with the expected byte.nil status, link.rel

will be recycled through the pipe and break.conn will be called again. Upon successful

termination of a connection, a link break (link.brk) packet is sent, informing all

concerned that the resources are free.

Link request and release commands are the first two choices in the WHILE

TRUE loop of the controller due to their frequency. In normal conditions, only these two

commands will ever reach the Controller module for action.

c. Action For Link Abort

When a link abort (link.abt) is received, the command is immediately

passed on to the pipe since additional action must be taken by other TRAMS. (The abort

command is eventually removed by the originating TRAM). Next, the Controller

determines the exact connection and its edgelist table index involved via the get.cur-

rent.tie procedure. To prevent a known bad edge connector from being immediately

reused by make.conn, the edge.ok value of the corresponding index is set to false.

With the failed edge connector marked as bad, the Controller continues by

sending a link reinitialize (link.rei) to the pipe so that both directions of both links

66

involved in the aborted communication may be reset. Note, the reinitialize command is

sent after the link abort command to ensure that all communication attempts cease prior

to completing the link engine reinitialization process. This is required by the TDS link

engine recovery procedures. At this point, the existing failed connection is fornally

broken with break.conn and remade with make.conn using a different path.

From here, the procedure is similar to that of the link request action above.

If the connection cannot be reestablished, a newly generated link requested is placed in

the pipe. If the failure to make a new connection is due to lack of edge connector

resources, the req.cnt counter is incremented. If a new connection is made, a link

acknowledge is placed in the pipe to inform the TRAMs involved to attempt communica-

tions again.

d. Action For Link Acknowledge, Break And Reinitialize.

Under normal circumstances, these commands are removed by the last

TRAM which takes action based on their receipt. If a TRAM fails to remove such a

command, they will be removed here to prevent the pipe from being flooded with

meaningless circulating commands.

An additional section is added to pass noncommands along the pipe. This is

used exclusively for testing purposes when specialized test commands were placed in the

pipe to monitor specific actions. Such testing or status information, like TRAM code

completion, is removed by the B004 monitoring the system.

e. Edge Connector Status

Also within the WHILE TRUE loop is a block of code which manages the

status of the edge connector links. Initially, Controller is told by the programmer which

connections are hard wired and that their status is "good", that is, the edge connectors as

listed in the data library edgelist are immediately available for use to establish

67

connections betv, .en like-links of TRAMS. If a TRAM detects and reports a failure as

the message exchange proceeds to make and break links, the Controller marks the edge

connector involved as "bad" and avoids assigning it in the future. This points out a

sharing of responsibilities between the Controller and TRAM processors. An Agent on a

TRAM has no knowledge of the routing assigned when a connection is requested and

acknowledged, however, it will detect a failure if the connection is bad. Conversely, the

Controller which made the requested connection has routing information, but cannot

itself determine if the connection is actually operational without being told by the

requesting TRAM. Similarly, the Controller cannot by itself determine when a failed

connection has been repaired without first assigning it to a TRAM for use. Therefore,

edge connectors previously marked as "bad" are periodically set to "good" so that they

may be assigned and tested. A timer-based trigger is used to prompt the Controller to

reset edge connector status.

Immediately within the WHILE TRUE loop is an ALT which guards both

the pipe input 2nd a boolean expression. The boolean expression evaluates to true when a

predefined time period has elapsed and the number of failed link requests due to lack of

edge connector resources has exceeded a predefined set point. Occam keyword AFTER

is used to measure the delay from clock time now which was initialized when the

program began, and reset when this expression evaluates to true. PLUS is a modulo

addition operator which accurately adds clock times since timers recycle from maximum

positive number to zero. The '&" is Occam boolean-and which requires both halves of

the expression to be true for the entire expression to evaluate to true. Under normal

conditions when no edge connector faults are reported, the expression never evaluates to

true since req.cnt never reaches the trip point (currently set at the number uf TRAMs in

the system). When many link failures are present, the timer delay prevents the expression

from constantly evaluating to true and thus consuming too much CPU time.

68

(req.cnt > no.trams) & clock AFTER now PLUS delay

When the combined expression evaluates to true, it signals a need to look

for new edge connector resources. If too many edge connectors are marked as bad, the

system slows appropriately since the remaining connectors must be used for all like-link

connections causing many link requests to be recycled as they wait their turn. If revairs

are made to the bad wires, the Controller will not realize the status change unless the

connection is reused by the TRAMs. Therefore, wheii many link requests fail due to lack

of resources, the Controller looks for newly repaired edge connectors by periodically

resetting their status to "good", thus making them available for use by make.conn as the

need arises. If the connection is still bad, the status is reset accordingly. If the

connection has been repaired, the status remains good until it fails again.

D. TRAM MODULE

Code on each TRAM is organized into five processes running in parallel and

communicating via internal channels. Figure 4.4 shows the assignment of both internal

and external channels to the TRAM processes with the configuration level link names

written outside the processor box and local channel names written on the inside. Note the

division of the data link directions: data output is the responsibility of the Agent process

and data input is received by the User process. Although each data link has its own

Agent, it was not necessary t separate the User processes between the two links. Since

the application code resides in User, the User processes could be combinei into one

process or connected via an internal channel so that the given application could have

simultaneous use of both links. However, User processes were kept separate in this

project to allow independent testing of both data links on each TRAM.

69

Link1 A ,,[.I

T800

,(Manage

mgr. o. a n.
,OuserO usi i

agent0 ,ow.lrom / egerv(3.Wo/rn~

litkO.from cl [slot) linkO in Iir*3 in lirk3.from.cO(slotj

trom pipe

Link2 pIpefs1.1]

Figure 4.4. TRAM Code Process Organization

1. Manager Process

Dedicated to managing the data link resources of the message exchange for a

singie TRAM, the Manager is connected via external links to the link control pipe, and

via internal channels to both Agent and User processes on the TRAM. Since the code for

the TRAM processes is replicated on each processor, two constants, slot.desig and

no.trams, are passed to the Manager along with the channels. Slot.desig tells each

TRAM which processor it is corresponding to the slot number in which it resides on the

B012. The slot number is also used to describe the data links: linkO of a given TRAM

70

equals the slot.desig, and link3 equals slot.desig+20. No.trams is a global constant

telling the system how many processors are installed on the B012, thus allowing crossbar

connections only to existing processors. Manager procedure call is as follows:

PROC manager (CHAN OF ANY to.pipe, from.pipe,
mgr.to.agentO, mgr.from.agentO,
mgr.to.agent3, mgr. from.agent3,
mgr.from.userO, mgr.from.user3,

CHAN OF INT mgr.to.userO, mgr.to.user3,
VAL INT slot.desig, no.trams)

Manager consists of an infinite loop monitoring all channel inputs, and a three

stage control pipe output buffer running in parallel with the infinite loop. The buffer

itself consists of three parallel processes, each as one stage inputting a three byte link

command, source, and destination, then passing it to the next stage. The middle stage is a

replicated parallel process allowing for easy increase in buffer size, however, testing

showed that minimizing buffer size improved performance, and the smallest reliable size

is three stages to allow room for continuous flow along the pipe.

Immediately within the WHILE TRUE loop is an ALT -which guards the three

possible direct inputs to Manager: from either Agent or from the pipe. Each input is

described separately below.

a. Action For Input From Agent

Either Agent communicates the needs of the application program via a

single byte along the mgr.from.agentO or mgr.from.agent3 channels. The byte re-

ceived, one of several predefined byte constants for internal communication and

contained in the intcmds library, is analyzed for further action. If the Agent signals that

it is finished using an established link, Manager immediately sends a link release

command to the pipe output buffer. Source and destination parameters with the link

release are generated by the Manager since it knows which Agent is notifying completion

(thus its link designation) and the destination to which it is still attached.

71

Similarly, if the Agent reports a failed communication the Manager

generates a link abort command along with source and destination byte and sends the

command to the output buffer. For testing purposes, an additional command was added

allowing an Agent to report its completion of data communications, thus allowing

performance timers to record processing time.

Finally, if the Manager receives a byte other than one of the predefined

commands, the integer translation of that byte is interpreted to be a request for a

connection to that link. Manager immediately sends a link request command, source and

destination to the output buffer, and records the destination for use in generating

subsequent commands.

b. Action For Input From Link Command Pipe

If neither Agent is communicating with the Manager, a three byte link

command will be taken from the pipe input when present. The command byte is anlyzed

to determine action to be taken, if any. A link request or release is simply passed along

since it has not yet reached its final destination; the Controller.

When a link acknowledge is received, the Manager determine its relevance

to this TRAM by checking the source and destination bytes. If the destination byte

matches a local link, that User is informed to expect receipt of data. The destination byte

is then set to byte.nil for future reference and removal by a subsequent TRAM. If the

source byte is local then the appropriate Agent is informed that a requested link is

complete and to begin transmitting. Likewise, the source byte is then set to byte.nil.

Finally, both source and destination are checked for content. If both are byte.nil, the

entire three byte command is removed from the pipe. Note: this occurs even if both

source and destination are local links, that is, the TRAMs linkO and link3 are connected.

72

Receipt of a link break is relevant to a TRAM only if the source byte is

local. (The destination code in the User module which receives data input always

monitors its channel, and need not be notified of connection creation or termination.)

First, the local variable holding the address of the destination is set to byte.nil to update

current status of connections. Secondly, the appropriate Agent is informed that the

previous connection has been terminated and a new connection may be requested if

desired. If either local link is involved, the command is consumed here, otherwise it is

passed along the control pipe.

If a link abort command is received, the command is immediately passed on

if neither local link involved. Since aborts are originated by the source, the command is

removed by the source upon its return, thus ensuring that both the Controller and the

affected destination have seen the abort message. If a local link is the cited destination,

the appropriate User is informed of the failed link by passing an integer along the channel

used by the InputOrFail.c procedure to trigger a forced termination. A link reinitializa-

tion will then be received, which informs the Agent and/or the User involved to

reinitialize the affected link engine by executing the Reinitialise procedure. As with the

acknowledge command, link bytes corresponding to local links are set to byte.nil before

being passed on. If both source and destination are byte.nil, indicating the command has

served its purpose, the command is removed from the pipe.

Finally, other bytes passed along for testing or troubleshooting purposes are

passed along without action, to be removed by either the Controller or by system

monitoring code on the B004.

73

2. Agent Process

The name Agent was chosen for this process to signify its role: to act on behalf

of the User in obtaining a connection and sending data. Once the Agent has instructions

from the User, the User proceeds with the application while the Agent waits for the

connection, passes the data block or recovers from a failed link.

Like the Manager, the Agent uses several internal channels to communicate with

the other TRAM processes, but only one external channel which outputs data to the

destination via crossbars. Agent also receives a constant integer denoting its link

designation. Header code for AgentO is shown; code for Agent3 is identical after

changing the "0" identification to "3".

PROC agentO (CHAN OF ANY mgr.to.agentO,
mgr.from.agentO, agentO.to.userO,
agent0.from.userO, linkO.out,

VAL INT link.desig)

Upon commencing execution, the Agent informs its User that it is ready to

receive data for outputting. Agent then enters an infinite loop which monitors input with

a PRI ALT from two sources: Manager or its respective User. The sequential actions

from both code blocks is interleaved by message passing via internal channels. After

initialization, the Agent sequentially: (1) receives data and destination from User, (2)

requests a link connection via Manager, (3) receives notification of link connection and

(4) passes data. If the connection is bad, the Agent: (1) informs Manager of a problem

and recovers, (2) receives notification of link termination, (3) and finally informs User

that it is ready to receive the next data and destination block. Note that the requested

destination address is embedded as the first byte in the data byte received from the User.

Use of the reinitialization procedures requires that data be passed as a block of bytes.

However, Occam contains numerous retyping operators to convert a collection of bytes to

and tom other data types such as integers, ieals, etc.

74

In the event of failed communication, the OutputOrFail.t procedure returns a

boolean true in the aborted variable when the watchdog timer expires. This causes

program execution to enter an IF construct which: (1) informs the Manager of link

failure, (2) receives return confirmation then (3) proceeds to reinitialize the failed link. If

the communication terminates without failure, the Manager is informed of the request

that the connection be terminated.

3. User Process

The third member process on each TRAM is the User, which completes the

relationships and interactions described above. User code also contains all application

code to be executed in the message exchange. For this analysis, dummy code was

inserted to simulate a load on each TRAM processor and the resulting influence on

system efficiency. That is, as the User module cor.,umes more effort processing data,

fewer requests for communications will be issued in a given time period. Conversely,

User workload influences the performance of the other modules on the TRAM by taking

more time slices to complete processing.

User header code follows the patterns above with internal channels, one

external data input channel, and two constant integers.

PROC userO (CHAN OF ANY agentO.to.userO,
LjentO.from.userO, mgr.from.userO,
linkO. in,

CHAN OF INT mgr.to.userO,
VAL INT link.desig, no.trams)

User code consists of two WHILE TRUE blocks running in parallel. The first

block is sequential code which manages data input similar to the output code used in the

Agent. However, the User fault tolerant routines rely on external notification of a fault to

terminate a failed communication by using the InputOrFail.c procedures. This notifica-

tion is received from the Manager via the integer channel mgr.to.user. Accordingly, the

75

input link must allow for reinitialization with or without data being received along the

link at the time of the failure. (Recall that in order to recover from a link fault, both input

and output link engines on both ends of communications must be reset). Therefore,

depending upon the command received from Manager, the link may be reinitialized at

different points in the code.

Application code is running in the second parallel block, which repeats a

predefined number of times for testing purposes, each repetition generating and sending a

new a,,a block. This includes manipulation of data received, generation of new data,

calculations and determination of destination to receive data. For this analysis various

routines were used in different test runs to select only like-links or unlike-links, as well as

simulating different degrees of load to be processed on the TRAM. A random number

generator with a seed based on processor clock time was used to select the next

destination when complete randomness was tested. Random numbers were generated

until an acceptable link designation was established, which was then sent as a link

request.

4. TRAM Code Configuration

To establish priority grouping of the five TRAM processes, the configuration

code consists of a PRI PAR with a high priority PAR block nested within. The high

priority block includes the processes which are crucial to external channel communica-

tion: Manager and Agents. The low priority block for applications contains both User

processes. Although this may appear at first glance to be counterproductive, significant

gains are made in system performance by ensuring link control functions are conducted

expeditiously. With different priorities, application code may wait unnecessarily while

requested links are being created and terminated if there are excessie delays along the

command pipe and output data links.

76

PRI PAR
PAR
manager ()
agentO()
agent3 ()

userO ()
user3 ()

Processor configuration code also includes declaration of all internal channels

used between the processes. Placement of channel names within parameter listings for

each process connects the correct processes together. Also, integer constants are created

in the configuration parameters. When assigning link designations to link3 processes, 20

is added to the slot.desig value received by the TRAM from global configuration code.

5. Global Configuration

At the global configuration level, all external links are assigned to processor

code, and processor code assigned to processors. As mentioned before, the TRAM code

is replicated to each T800 pro essor on the B012. Code replication is performed in the

global configuration section.

Two major blocks of code must be assigned to two different types of processors.

Controller code is assigned to the crossbar controlling T212 Transputer, and TRAM code

is assigned to one or more T800s on the B012 motherboard. (Code for the monitor code

on ,"e B004 and its T414 is handled entirely separate from the message exchange code in

an EXE fold). Transputer type is signified by the keyword T2 for T212 Transputer and

T8 for a T800. This lets the compiler know which libraries are to be used in creating

compiled code for each processor. To assign links, a set of constants is defined in the

library links which also contains the constant notrams. Link assignment matches the

processor code parameter with the hardware link engine on each Transputcr. Controller

code header shown below is preceded by a one-to-one matching of software channel

77

name with hardware link component with the PLACE ... AT construct. The channel

names are then matched to the procedure header definition in the local Controller code

previously defined.

PLACED PAR
PROCESSOR no.trams T2
PLACE pipe(0j AT link2in
PLACE pipe[no.traams+l] AT linklout :
PLACE t2.to.cO AT link0out :
PLACE t2.from.cO AT link0in
PLACE t2.to.cl AT link3out
PLACE t2.from.cl AT link3in

controller (pipe[0], pipe[no.trams+l],
t2.to.cO, t2.from.cO,
t2.to.cl, t2.from.cl, no.trams)

Similarly, the TRAM code parameters are assigned to hardware links, but a

replication process is used to assign the same code with slightly different parameters to

each T900. This is done by using an array of channels and carefully matching the correct

array index with the replicated parameters. For example, to create the pipe each linklout

of a given index value [slot] is physically connected to the next corresponding link2in of

index value [slot+lI. This technique informs the software of the actual connections made

with the B012 hardware in a single statement instead of having to itemize the links of

each processor. Each processor is also given a designation based on the incremented

v alue of slot. Processor identification numbers are 100, 200, 300, ... for the T800 in slots

zero, one, two, etc. Since slot varies for each replication, each T800 processor receives a

different constant value for its slot designation and subsequent link designations.

78

PLACED PAR slot = 0 FOR (no.trams)

PROCESSOR ((slot+l)*100) T8
PLACE pipe[slot] AT linklout
PLACE pipe[slot+1] AT link2in :
PLACE linkO.from.cltslot] AT link0in
PLACE linkO.to.cO[slot] AT link0out
PLACE link3.from.cO[slot] AT link3in
PLACE link3.to.cl[slot] AT link3out

tram.code (pipe[slot], pipe[slot+l],
linkO.from.cl[slot], linkO.to.cO[slot],
link3.from.cO[slot], link3.to.cl[slot],
slot, no.trams)

As can be seen, all channel names used are declared strictly for the global

configuration section, particularly those which are declared as arrays of channels.

Correspondence with local channel declarations of the procedures themselves is achieved

by correct placement of the parameters listed with the procedure call.

79

V. MESSAGE EXCHANGE PERFORMANCE EVALUATION

Numerous test runs of the message exchange were conducted with variations in

program structure and parameters. In general, each run consisted of 1000 link cycles

(link control activity necessary to establish and terminate one link) performed

back-to-back by each User. With four TRAMs in the system, a total of 8000 link cycles

were completed in each run. The destination is chosen at random for each link cycle. In

the unrestricted case, a User chooses from a set of seven possible destinations for each

link cycle (excluding itself from the complete set of eight Users). When performance of

only like-link or only dislike-link connections was studied, the User chose from a set of

three possible destinations. All selections were uniformly distributed across the possible

destinations available. Measurements include total time to completion, number of

requests, acknowledges, breaks, aborts, and reinitializes needed. For various tests the

system was run either loaded (with work simulated in the User process by adding a

10,000 iteration SKIP) or unloaded and thus only performing link control and data

passing activity.

In the tables below each measurement is the average of five runs under the same

conditions. Individual runs vary due to the random nature of the link destination

requests, however, variations between runs are minor. Faults are introduced by providing

only one physical crossbar to crossbar edge connector for each like-link connection: one

cable for linkO to linkO connections and one cable for link3 to link3 connections. In all

fault-test cases the library tables incorrectly state that all 16 edge connector cables are

available, therefore, faults are detected when the nonexistent cables are used. The two

cables actually connected are the last two in the list, so the previous 14 must be identified

80

as faulty before the good cables are found. Additional faults are caused as known failed

cables are arbitrarily reset in hopes of finding repaired cables. Also, additional link

control commands are needed to accommodate simultaneous like-link requests since only

one can be fulfilled at a time with the other request being recycled.

A. DATA TRA,, SFER VARIATIONS AND SYSTEM EFFICIENCY

1. Data Block Size

Significant variations in system performance occurs due to data block size. Data

block size must be defined at compile time due to the requirements of the link failure and

recovery library procedures. Once selected, the data block size remains fixed for the

duration of program execution. Therefore, if tl - application program expects to transmit

variable length ddta between nodes, the block size must be chosen to allow the maximum

expected data length, with extra bytes in shorter messages being discarded. Test

measurements were collected with data block size varying from two to 8192 bytes in

factors of two. The upper limit of 8192 bytes was reached due to the memory available

on each TRAM (36 kilobytes total of on and off-chip RAM) and the declaration of arrays

for both output and input data blocks by each user.

Tables 5.1 and 5.2 provide the results of testing the unloaded system with and

without faults, and Tables 5.3 and 5.4 with simulated system load. Time to complete an

8000 request cycle run increases with data biock size, but not significantly until block

size reaches 64 bytes in the unloaded runs and 128 bytes loaded. The relatively

consistent execution times for smaller data block sizes represents the time to route link

control information and perform the action required for link operations. Actual process-

ing and data passing performed by Users easily fit within the gaps formed by high

priority Agent and Marager processes concentrating on link control.

81

Raw data measured and listed below includes execution time, number of

requests and total link control commands used as averaged over five runs of identical

parameters. Calculations which compare number of data bytes take into account the data

block size and the number of data blocks passed: 8000 in all runs. Calculations involving

link control bytes take into account that each command consists of three bytes and the

number of link control commands issued (either requests only or the sum of all six

command types, as specified). Calculated figures listed include microsecond per data

byte passed, average number of requests needed for the per data byte passed, data transfer

rate in kilobytes per second (inverse of microseconds per data byte, adjusted for change

in units), a ratio of data bytes to control bytes, and control communications overhead as a

percentage of link control bytes passed of the total bytes passed in the system.

The single T212 link controller also represents a limiting factor, particularly

when processing a request for a like-link. During the 1 212's execution of sequential link

manipulation code no additional link control commands are received causing the pipe to

fill. As each TRAM's buffer fills, no more control commands can be submitted or

received by the Managers on subsequent TRAMs. This ripple effect continues and

prevents Agents and Users from proceeding to the next data transmission. Aithough it

may be possible to implement the T212 code as a collection of parallel processes with

one being an input buffer, such constructs consume considerable amounts of memory.

With only two kilobytes of on-chip RAM and no off-chip RAM available, every effort

was made to minimize T212 code size.

82

TABLE 5.1

SYSTEM PERFORMANCE DATA: UNLOADED, NO FAULTS

Data Time Number Total uSec REQs Data Data Comms
Block (Sec) Of Link Per Per Xfer To Over-
Size REQs Control Data Data Rate Control head

Cmds Byte Byte KB/Sec Ratio

2 3.56 24,266 48,266 222.65 1.517 4.4 0.33 90.05%
4 3.56 24,287 48,287 111.24 0.759 8.8 0.66 81.91%
8 3.56 24,269 48,265 55.63 0.379 17.6 1.33 69.35%

16 3.63 24,788 48,788 28.32 0.194 34.5 2.62 53.35%
32 3.68 25,329 49,329 14.36 0.099 68.0 5.19 36.63%
64 3.74 26,322 50,322 7.31 0.051 133.6 10.17 22.77%

128 3.94 28,468 52,468 3.85 0.028 253.6 19.52 13.32%
256 4.29 32,286 56,286 2.16 0.016 466.2 36.39 7.62%
512 5.09 38,330 63,958 1.24 0.009 786.3 64.04 4.47%

1024 7.29 58,299 82,299 0.89 0.007 1097.1 99.54 2.93%
2048 11.90 91,136 114,736 0.73 0.006 1344.1 142.80 2.06%
4096 21.41 157,309 181,309 0.65 0.005 1494.5 180.73 1.63%
8192 40.44 289,091 313,094 0.62 0.004 1582.8 209.32 1.41%

TABLE 5.2

SYSTEM PERFORMANCE DATA: UNLOADED, WITH FAULTS

Data Time Number Total uSec REQs Data Data Comms
Block (Sec) I Of Link Per Per Xfer To Over-
Size REQs Control Data Data Rate Controi head

Cmds Byte Byte KB/Sec Ratio

2 3.75 24,993 49,044 234.21 1.562 4.2 0.33 90.19%
4 3.73 25,107 49,154 116.66 0.785 84 0.65 82.17%
8 3.73 24,872 49,121 58.31 0.389 16.7 1.30 69.72%

16 3.80 25,583 49,631 29.70 0.200 32.9 2.58 53.77
32 3.86 26,258 50,3C6 15.09 0.103 64.7 5.09 37.09%
64 3.94 27,355 51,437 7.70 0.053 126.8 9.95 23.16%

128 4.14 29,247 53,441 4.04 0.029 241 4 19.16 13.54%
256 4.52 33,452 57,511 2.01 0.016 442.1 35.61 7.77%
512 5.33 41,725 65,786 1.30 0010 750.4 62.26 4.60%

1024 7.62 60,629 84,699 0.93 0.007 1050.3 96.72 3.01%
2048 12.06 93,171 117,245 0.74 0.006 1347. 139.74 2.10%
4096 22.08 166,511 190,620 6.67 0.005 1449.1 171.90 1.72%
8192 42.01 312,722 334,880 0.64 0.005 1523.4 195.70 1.51%

83

TABLE 5.3

SYSTEM PERFORMANCE DATA: LOADED, NO FAULTS

Data Time Number Total uSec REQs Data Data Comms
Block (Sec) Of Link Per Per Xfer To Over-
Size REQs Control Data Data Rate Control head

Cmds Byte Byte KB/Sec Ratio

2 14.36 8,941 32,941 897.35 0.559 1.1 0.49 86.07%
4 14.36 8,849 32,849 448.66 0.277 2.2 0.97 75.49%
8 14.37 8,905 32,905 224.54 0.139 4.3 1.95 60.67%

16 14.41 9,156 33,156 112.54 0.072 8.7 3.86 43.73%
32 14.45 9,116 33,116 56.43 0.036 17.3 7.73 27.96%
64 14.55 9,304 33,304 28.41 0.018 34.4 15.37 16.33%

128 14.74 9,647 33,647 14.0 0.009 67.8 30.43 8.97%
256 15.16 10,604 34,604 7.40 0.005 131.9 59.18 4.82%
512 16.09 14,556 38,556 3.93 0.004 248.6 106.24 2.75%

1024 17.69 17,180 41,580 2.16 0.002 452.1 197.02 1.50%
2048 21.70 38,210 62,210 1.32 0.002 737.3 263.37 1.13%
4096 30.07 85,155 109,155 0.92 0.003 1064.1 300.20 0.99%
8192 48.01 201,155 225,155 0.73 0.003 1333.1 291.07 1.02%

TABLE 5.4

SYSTEM PERFORMANCE DATA: LOADED, WITH FAULTS

Data Time Number Total uSec REQs Data Data Comms
Block (Sec) Of Link Per Per Xfer To Over-
Size REQs Control Data Data Rate Control head

Cmds Byte Byte KB/Sec Ratio

2 14.38 9,236 33,303 898.88 0.577 1.1 0.48 F6.20%
4 14.39 9,201 33,266 449.58 0.288 2.2 0.96 75.72%
8 14.40 9,180 33,249 224.93 0.143 4.3 1.92 60.92%

16 14.43 9,239 33,302 112.74 0.072 8.7 3.84 43.84%
32 14.48 9,439 33,507 56.54 0.037 17.3 7.64 28.20%
64 14.57 9,510 33,577 28.45 0.019 34.3 15.25 16.44%

128 14.77 9,926 34,001 14.4 0.010 67.7 30.12 9.06%
256 15.20 11,122 35,202 7.42 0.005 131.6 58.18 4.90%
512 16.14 15,246 39,337 3.94 0.004 247.8 104.13 2.80%

1024 17.83 19,762 43,254 2.18 0.002 448.8 189.39 1.56%
2048 21.81 39,840 63,338 1.33 0.002 733.6 258.68 1.15%
4096 30.44 91,405 115,533 0.93 0.003 1051.3 283.62 1.05%
8192 49.29 221,866 246,043 0.75 0.003 1298.4 266.36 1.11%

84

Also of concern is the B004 and T414 monitor Transputer. Excessive work by

this Transputer would also have a slowing influence on the link control pipe. Several

variations of B004 code were used with widely varying degrees of complexity. Timing

differences between the simplest T414 code and the monitor program used were

negligible. Also, both input and output buffers were added as part of the T414 code to

help smooth its presence on the pipe.

Figure 5.1 shows the effect of data block size on execution time. All four

combinations of load and fault status are shown. Note the minimal difference between

the runs with and without faults. With any number of TRAMs in tht system, the

minimum number of good edge connectors needed is two; one for each type of like-link.

Less than one link would result in failure to pass any data between like-links, thus

causing affected processes to hang. However, with four TRAMs the minimum needed to

obtain fault free transmission is four, two per like-link type. Therefore, the differences in

the number of edge connectors in these runs is only a factor of two, and does not

significantly stress the system since the simultaneous need for two like-link connections

is relatively rare.

As data block size increases beyond 128 bytes the control pipe and T212 are no

longer bottlenecks. Sufficient time is spent by each node in creating and passing data that

link control commands enter the pipe with minimal restriction. Consequently, links are

terminated in a timely manner allowing the next request for those resources to be fulfilled

in the first attempt without recycling the link request. Worst case performance occurs

with the smallest data block size and unloaded User processes. Since no application

work is done by unloaded Users the performance data is used for comparison as a

baseline.

85

50

45

40

35
-

(Jn 30

E 25

Co 20

X

10

0 I I I I I I I

2 4 8 16 32 64 128 256 512 1024 2 48 4096 8192

Leta Block Size (Bytes)
m No Faults Unloaded + Faults, Unloaded
0 No Faults, Loaded A Faults, Loaded

Figure 5.1. Execution Time Versus Data Block Size

Tables 5.1 through 5.4 show increases in data communication rate with block

size, but the rate does not double as block size. Although more data is transferred in

larger blocks, the system must work harder to establish the requested connections since

resources are held longer. Without a quick turnover of resources to the next requesting

node, link control information is recycled back into the pipe for a later try. The number

of link requests increases dramatically with block size showing the difficulty in achieving

the requested connection. Therefore, greater link control overhead reduces system

efficiency when block size becomes too large.

86

One way to show this is to compare data bytes versus control bytes, noting that

each control command consists of three bytes. Figure 5.2 shows the data byte-to-control

byte ratio and the loss of communication efficiency encountered when data block size

becomes very large. In the unloaded tests, as the block size is increased beyond 1024

bytes the data-to-control ratio (and hence, system efficiency) still increases but less

rapidly than with block sizes below 1024 bytes. As data block size is increased beyond

4096 bytes, the data-to-control ratio actually decreases. The loaded case shows a similar

affect, however, since fewer control communications are needed the decrease in

efficiency will take place a, higher data block sizes than practical to test.

320

300

0 280

co 260

O 240

. 220
0
O 200
0-. 180

S160
>1 140
c2o
MO 120
Cj o 100

o 80
o 60 -

40

20

0
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Message Block Size (Bytes)
0 No Faults, Unloaded + Faults, Unloaded
o No Faults, Loaded a Faults, Loaded

Figure 5.2. Data-To-Control Communication Ratio

87

Efficiency comparisons using control and data communications are not the best

indicator of performance since each link's DMA engine proceeds with only minimal

effort of the system CPUs. Although the use of DMAs is especially beneficial in passing

large data blocks, system burden increases when all CPUs in the control pipe are passing

small commands. Using the execution time of the unloaded runs with small data block

size as a base time gives a better comparison of system overhead resulting from link

control operations. As discussed above, no significant change in execution time occurs

until block size exceed 64 bytes. Therefore, execution time of small block size runs is

predominantly a measure of link contiol effort of' the system. By averaging the execution

times for two, four, and eight byte block sizes of the unloaded runs a base execution time

for the system is established.

Figure 5.3 shows a ratio of base execution time versus execution time of larger

block sizes in both loaded and unloaded runs. Worst case, of course, is small block size

on an unloaded system. Control overhead drops off sharply as block size is increased

beyond 128 bytes. In the loaded system, overhead starts at about 25% and decreases

slowly as block size increases until approaching the unloaded overhead at a about 8%

with a 8192 data block size. Control overhead for systems with load less than the test

load will plot between the test load and the unloaded system results. Only measurements

of runs without faults are shown for clarity.

2. Data Routing Via Multiple Crossbars

Separating each TRAMs data links into individual User processes allowed

analysis of the affects of different routing paths. Due to the wiring arrangement between

the crossbars and the TRAMs, the methods used to connect like-links is significantly

more complex than connecting a linkO to a link3. Additionally, the slowing influence

associated with multiple C004 crossbars is a concern in like-link connections.

88

100%

90%

80%

-t /0%

> 60%
0

20 50%

0
O 40%

20/o

10% - __, _______

8 16 32 64 128 256 512 1024 2048 4096 8192

Data Block Size (Bytes)
Unloaded, No Faults o Loaded, No Faults

Figure 5.3. System Link Control Overhead

Three sets of runs Nere conducted under varying constraints limiting the routing

assignments. For each of three data block sizes: 8192, 1024, and 128 bytes, a set of runs

were conducted under normal routing (uniformly selected from all seven possible

destinations), with only like-link routing and with only dislike-link routing (each

uniformly selected from the appropriate subset consisting of three possible destinations).

Table 5.5 below shows the results.

As can be seen from the data, the large data block size of 8192 blocks causes an

increase in required time when routing is restricted to only like-link (two connections per

crossbar) as compared to the case in which routing is restricted to only dislike-links (one

connection per crossbar). This result is not as pronounced in the 1024 byte block and

89

even less with 128 byte block. Figure 5.4 shows a comparison of the three link

restrictions and three data block sizes, normalized to the random link type of each block

size.

TABLE 5.5

LiNK ROUTING ANALYSIS RESULTS

Parameter Measured Link Routing Restriction

MESSAGE SIZE: 8192 0 to 3 RANDOM 0 to 0
3 to 0 3 to 3

Execution Time (seconds) 45.706 48.137 49.023
Number of Requests 160,311 203,743 216,073
Total Control Commands 184,311 227,743 239,473
Time(usec) / Data Byte 0.6974 0.7345 0.7480
Requests / Data Byte 0.0024 0.0031 0.0033
Kilobytes Data/ Second 1400.3 1329.5 1305.5
MESSAGE SIZE: 1024 0 to 3 RANDOM 0 to 0

3 to 0 3 to 3

Execution Time (seconds) 17.682 17.7562 17.846
Number of Requests 16,625 18,558 17,571
Total Control Commands 32,625 34,558 33,571
Time(usec) / Data Byte 2.1584 2.1675 2.1785
Requests / Data Byte 0.0020 0.0023 0.0021
Kilobytes Data / Second 452.4 450.5 448.3
MESSAGE SIZE: 128 0 to 3 RANDOM 0 to 0

3 to 0 3 to 3

Execution Time (seconds) 14.7788 14.7442 14.8594
Number of Requests 9,427 9,617 9,427
Total Control Commands 25,389 25,617 25,427
Time(usec) / Data Byte 14.4324 14.3986 14.5111
Requests / Data Byte 0.0092 0.0094 0.0092
Kilobytes Data / Second 67.7 67.8 67.3

90

106%

104% _

0 100%-
0 i
z 98%< i
- 96%
094%LL >.

92%

90% >

0 88%

N 84%

E 82%>
o 80% >

78o
03-03 RAND 00-33 03-03 RAND 00-33 03-03 RAND 00-33
- 128 Byte Data Block - -1024 Byte Data Block - -8192 Byte Data Block -

Link Routing Type And Data Block Size
Execution Time M Number Of Requests
No. Link Commands E2 KBytes(Data)/Sec

Figure 5.4. Performance With Communication Type Restrictions

B. TRAM CODE STRUCTURE

Considerable influence upon performance can result from slight changes in an

Occam program :,tructure. Timing and CPU utilization are changed when different

priorities are assigned to parallel (PAR) processes. The TRAM code is subject to these

considerations and various configurations and their effects are discussed below.

As shown earlier, each TRAM contains five processes executing in parallel and

communicating with each other and with other processors (see Figure 3.7). Atkin

[Ref 10:p. 12] stressed that efficient code must be structured to separate as much as

practical those processes performing communications from those performing calculation.

91

This is accomplished in the TRAM by placing all application calculation in only the User

modules. When data is to be passed to an external destination the data is passed to a high

priority process dedicated to outputting that block along a link.

Communications processes should be run in high priority to help ensure that the

communications themselves do not become a bottleneck in holding up information flow.

Prompt initiation of communications also sets in action the DMA link engines which can

then release the processor to perform other work. Given this guidance, it is clear the

Manager process must be run at high priority to handle all link control communications

and the User processes must be run at low priority to perform application work and data

input. Different configurations were tested adjusting these priorities. Performance of the

configurations varied widely; some resulted in nonfunctioning programs due to commu-

nications starvation. For example, running the User processes in high priority and the

Agent processes at low priority resulted in deadlock.

Three configurations were tested and compared under unloaded and loaded condi-

tions using a 1024 data block size. The normal case consisted of the process priority as

listed in the presented code. Case I and Case 11 are listed below:

Normal: Case I: Case II:

PRI PAR PRI PAR PAR -- low
PAR -- hi manager () -- hi manager ()

manager () agentO) -- w agentO ()
agentO () agent3(, agent3 ()
agent3 () userO () userO ()

-- low user3 () user3 ()
userO ()
usar3)

Comparisons of the three cases are shown in Figure 5.5. Separate tests were

performed with and without simulated load in the User process. All figures are

percentages normalized against the appropriately loaded normal case.

92

400% .]

___-_____415%...

350%

"v 300%

0Z 250%

0

CL 50%

0%

Normal Case I Case II Normal Case I Case II
Unloaded Loaded

TRAM Process Priority And User Load
- Run Time 80 Number Of Requests M No. Of Control Cmds

M uSeconds/Data Byte Z2 Comms Overhead

Figure 5.5. TRAM Code Process Prioritization And User Load

C. LINK FAULT RECOVERY PERFORMANCE

When a link fault occurs a minimum of three additional control commands are

issued: link.abt, link.rei and link.ack (see Figure 4.1). If a replacement route is not

available either due to lack of "good" edge connectors or all routes artc busy, a iink.req

Will cycle in the control pipe as in the non-fault case. If other faulty edge connectors are

inadvertently assigned (having not yet been discovered as faulty), the abort message

chain will repeat until a good route is found or a cycling request is issued.

After the Controller has determined a valid status for all 16 edge connectors the

abort message chain should occur once for each new request resulting in an abort due to a

newly created fault. However, as the req.cnt increments when the Controller realizes a

93

resource shortage, previously identified failed edge connectors are reset allowing them to

be reassigned in the hopes of locating repaired cables. Two variables control the

periodie' , of resetting edge connector status: req.cnt upper limit and delay time value.

Fc Lnls project the req.cnt upper limit was set equal to the number of TRAMs in the

system (four) and the value for the delay timer was set to 16000 ticks of the low priority

clock, or about one second. Use of the counter prevents unnecessarily resetting edge

status without need, and the timer minimizes repeated resettings when the need for new

resources is great. Both values can be adjusted accordingly to adapt system performance

to the application implemented. For example, a shorter time delay would quicken the

Controller's ability to find newly repaired edge connectors.

Execution time affects fault recovery actions since as the system operates longer

under fault conditions, more previously identified faulty edge connectors will be reset

based on delay time. Data block size does not directly affect the degree of additional

workload resulting from the presence of link faults. However, in the test cases run the

use of larger data blocks incrcases the total amount of data transferred, thus increasing

total execution time and, consequently, the number of fault recovery communications.

94

TABLE 5.6

PERFORMANCE ASPECTS OF FAULT DETECTION AND RECOVERY

System Unloaded System Loaded
Data No. Of Added Comms No. Of Added Comms

Block Aborts Total Per Aborts Total Per
Size Comms Abort Comms Abort

2 17.2 778 45.2 22.2 362 16.3
4 15.4 867 56.3 21.6 417 19.3
8 16.6 856 51.6 22.8 344 15.1
16 15.8 843 53.4 22.0 146 6.6
32 16.0 977 61.1 22.6 391 17.3
64 18.2 1,115 61.2 22.6 273 12.1
128 19.4 974 50.2 25.0 354 14.1
256 19.4 1,224 63.1 26.6 598 22.5
512 20.4 1,828 89.6 29.8 781 26.2
1024 23.2 2,400 103.4 30.8 1,674 54.4
2048 24.8 2,509 101.2 32.6 1,128 34.6
4096 36.2 9,310 257.2 42.6 6,378 149.7
8192 52.6 21,786 414.2 59.0 20,888 354.0

95

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

By using specialized though off-the-shelf hardware, a dynamica!'y reconfigurable

network of Transputers can be constructed. The Transputer's unique link hardware

makes this single-chip processor very appropriate for this type of system. Efficiency of

th- message exchange presented here is largely determined by data block size and the

appli -ation load on each node. System control overhead is minimiL-d by keeping the

link control commands small and infrequent. As a dynamically reconfigurable system,

this message exchange evaqluated the worst case scenario of requesting and establishing a

new connection for each data block passd. A semi-static configuraton system, which

reconfigures the network topology only at synchronized points during application

program execution, would improve system efficiency by reducing overhead at the

expense of reconfiguration flexibility.

A concert implemented in hardware should have superior performance over the

same concept implemented in software. In this case, use of program controlled crossbars

to directly connect communicating nodes should perform comparably well or better than

a packet routing systen x.,iich passes data through intermediaries. However, gains made

in the direct routing of data are offset by losses incurred in routing crossbar control

information. Utilization of a link control pipe to pass control information from node to

node diminishes some of the gains achieved from direct data connectio. An ideal

correction to this drawback would be to pass link control information point-to-point,

comparable to i>e manner in which data is passed. One method for implementing

complete crossbar connectivity is described in the Esprit Proje t [Ref 241 in which all

96

four links of each Transputer are connected to large crossbars. Thus far in the Esprit

Project semi-static reccnfiguration is implemented, and use of specialized hardware

allows for increased expandability.

Techniques explored in this paper stress the circuit switching approach made

possible with readily available hardware, including program controlled crossbar switches.

Considerable commercially available hardware also exists employing packet routing

methods, most notably hypercube parallel processors. Hypercube topologies maximize

performance by symmetrically interconnecting nodes to minimize the distance between

any pair of processors, thus reducing packet routing overhead. A hypercube topology

contrasts the message exchange developed here by substituting crossbar control overhead

with packet routing overhead. A key parameter affecting performance in both topologies

is message size, which is determined entirely by the application to be executed. A

performance comparison between the two methods should be conducted by executing

identical application code in each topology. Since the number of nodes in a hypercube is

equal to two raised to the nth power, where n is the number of links available to eacri

node, a 16 node hypercube could be readily constructed using Transputers. This

Transputer hypercube can be evaluated against a 16 node message exchange implement-

ed on a fully populated B012 motherboard.

B. RECOMMENDATIONS FOR FOLLOW-ON WORK

Integrated shipboard weapons systems of the complexity found in AEGIS consict of

a collection of specialized computers distributed throughout the weapon platform and

communicating with each other as necessary to detect, identify, track, display and direct

the weapons' fire towards targets. Although the processing power is distributed among a

number of processors, the specialization calls for discrete elements of processing power

to be assigned to specific tasks. Communications within each group as well as between

97

groups need not be completely dynamic nor be able to achieve any arbitrary topology.

However, some reconfiguration ability would be invaluable as the system posture

changes or in response to faults occurring in the system. A posture change of the

weapons system could result from refinement of the tactical environment, for example, as

the potential source of the current threat is narrowed to subsurface as opposed to

airborne, appropriate computing resources can be directed to concentrate accordingly.

Given this dedicated grouping of computing resources, an architecture similar to the

B012 can be employed at each specialized station. A coliection of Transputers with

dynamic reconfiguration could adapt to system load changes as well as the occurrence of

local faults. Interconnection between stations can be achieved by using switchable links

of the crossbars accessible at the edge connectors. A hierachy of control would be

established between stations using a inter-B012 link control pipe separate from the

internal pipe developed here. Again using the B012 as an example, the TRAM in slot

zero can readily be disconnected from normal C004 crossbar connections, thus freeing a

significant processing resource to direct interstation communication control.

Figure 6.1 shows an arrangement of B012 stations with an additional link control

pipe using the slotO TRAM of each station. Data connections between stations can be

hardwired between the remaining crossbar links not used for the local TRAMs.

Assignment of these external links can be weighted in favor of the most needed

communications routes, with additional links assigned for redundant communications

paths thus allowing for interstation link fault tolerance in a similar manner as demonstrat-

ed on the single B012 in this project. Interstafion link fault tolerance would become

especially valuable when considering various battle damage possibilities throughout the

ship as well as equipment failures.

98

B012 A B012 B B012 n

*T212 T212 T212

Network Control

I I

------- - - - -

slot lo so

F Slot 2

s 0

Slo 15 slo 1°• S I,

Figure 6.1. Multiple B012 Connectivity And Control

Link control communications overhead will always be a factor limiting efficiency,

however, if reconfiguration is a rare event then control signals will be minimized as

compared to a completely dynamic and therefore worst case system in terms of overhead.

Also, if the processing power of a given station must be increased, or if more external

links must be added, two or more B012s can be arranged head-to-tail to extend the local

link control pipe thus increasing the number of local TRAMS as well as crossbars.

99

Although Transputers are an extremely capable computer component, the above

discussion should not be taken to imply that a complex integrated weapons system can or

should be implemented in the off-the-shelf technology as described in this thesis.

However, simulations and modelling of system functions and interactions can be

implemented as described. Link connections can re!ay simulated sensor information as

input to one station, environmental and real-world simulation to another, weapons

response to a third, and so on. Additional stations can output commands to weapons'

control as well as tactical displays and communications. As a modelling tool, Transput-

ers can be used to test and optimize system software and hardware topologies, and to

identify and test the specialized hardware necessary to meet the high perf,,mince needs

of a modern weapons system.

100

APPENDIX A

MESSAGE EXCHANGE LIBRARIES AND SYSTEM CODE

-- DATA LIBRARIES used in B012 Message Exchange
-- All libraries stored in same directory

-- links - defines Transputer links and # of TRAMS used

VAL link0out IS 0 -- standard link definitions
VAL linklout IS 1
VAL link2out IS 2
VAL link3out IS 3
VAL link0in IS 4
VAL linklin IS 5
VAL link2in IS 6
VAL link3in IS 7
VAL no.trams IS 4 -- number of TRAMS on B012

-- c4cmds - defines C004 crossbar commands

VAL c4.input.output IS 0 (BYTE):
VAL c4.link IS 1 (BYTE):
VAL c4.enquire IS 2 (BYTE):
VAL c4.setup IS 3 (BYTE):
VAL c4.reset IS 4 (BYTE):
VAL c4.disconn.output IS 5 (BYTE):
VAL c4.disconn.link IS 6 (BYTE):

-- ctrlcmds - defines link control pipe commands

VAL link.req IS 40 (BYTE): -- link actions
VAL link.ack IS 41 (BYTE): -- for control pipe
VAL link.rel IS 42 (BYTE):
VAL link.brk IS 43 (BYTE):
VAL link.abt IS 44 (BYTE):
VAL link.rei IS 45 (BYTE):

-- blcksize - defines data block size for Agents and Users

VAL Llock.size IS INTl6(16) : -- bytes

101

-intc-mds - defines other internal commands used
-- - and link translation table

VAL failed is 60 (BYTE):- predefined values
VAL remnit IS 61 (BYTE):- signal to reset
VAL done.with.link IS 63 (BYTE):- output is done
VAL all.done IS 65 (BYTE): -- tram done
VAL ready.to.rcv IS 67 (BYTE): -- Agent to User
VAL link.made IS 68 (BYTE) : -- Mgr to Agent
VAL link.gone IS 69 (BYTE): -- Mgr to Agent
VAL byte.nil IS 99 (BYTE) : -- nil defined
VAL BOOL otherwise IS TRUE: -- for IF stints
VAL TNT user.failed IS 60 : -- for fault recovery
VAL TNT user.reinit IS 61 : -- Mgr to User
VAL TNT user.linkmade IS 68 : -- Mgr to User

-- array to convert C004 link number to linkO or 3 of Tram
slot

-index 0-31 for c4links 0-31
-- data TNT is 0-15 for Trains 0-15 linkO

-- 20-35 for Tramns 0-15 link3
VAL [32] TNT to.slot IS

22, 25, 21, 5, 2, 1, 6, 26,
15, 8, 35, 31, 12, 32, 28, 11,
7, 23, 4, 3, 27, 24, 0, 20,

34, 13, 14, 33, 9, 29, 30, 10)

-- faultiine - used by Agents for watchdog timer

VAL fault~tirne is INT(1024) : -- clock ticks

-- edgedata - defines B012 P1 edge connections wired

-- number of connectiLons suitable for 3 to 3 links
VAL TNT edge3.ct IS 8:

-- each edge.a[x] is manually patched to edge.b [xl
VAL edge.a IS [4(BYTE), 6(BYTE), 31(BYTE), 25(BYTE),

19(BYTE), 16(BYTE,, 8(BYTE), 12(BYTE,,
O(BYTE), 1(BYTE), 29(BYTE), 24(BYTE),

17(BYTE), 21(BYTE), 10(BYTE), 14(BYTE)]:

VAL edge.b IS [5(BYTE), 3(BYTE), 28(BYTE), 26(BYTE),
22(BYTE), 18(BYTE), 9(BYTE), 15(BYTE),
2(BYTE), 7(BYTE), 30(BYTE), 27(BYTE),

23(BYTE), 20(BYTE), 13(BYTE), 11(BYTE)]

102

-- B012 Message Exhcange w/2 C004's & 16(max) TRAMS
-- Code for T212 Crossbar Controller
-- Note: B004 monitoring code is seperate

PROC controller (CHAN OF ANY from.pipe, to.pipe,
to.cO, from.cO, to.cl, from.cl,

VAL INT no.trams)

-- data library calls
#USE "c4cmds.tsr"
#USE "ctrlcmds.tsr"
#USE "iicmds.tsr"
#USE "edgedata.tsr"

VAL delay IS 16000 : -- pause in status reset
BYTE token, source, dest
BYTE src.conn, dst.conn : -- holds current hookups
BOOL continue, accomplished

[16]BOOL edge.ok : -- edge status array
INT i, now, edge.index, req.cnt :
TIMER clock : -- timer for edge reset

-- Subroutine to set a link to nil if inactive,
-- or reset high bit to low if active

PROC reset.or.nil (BYTE c4link)

IF
-- if high bit is set (link is acitve)
((INT(c4link))BITAND(INT(BYTE #80)))=(INT(BYTE #80))

-- then reset high bit to low for valid link number
c4link := BYTE((INT(c4link)) >< (INT(BYTE(#80))))

otherwise
-- high bit is low therefore link is NOT active
c4link := byte.nil

- end of PROC reset.or.nil

103

-- Subroutine to handle C004 commands and response

PROC c4.cmd (CHAN OF ANY to.x, frn.x,
VAL BYTE crnd, bi, b2, BYTE b3)

SEQ
IF -- determine command to use

cmd = byte.nil -- just do enquire
SKIP

b2. = byte.nil -- single parameter command
to.x ! cmd; b2

otherwise
to.x ! cmd; bi; b2 -- two parameter command

to.x ! c4.enquire; b2 -- verify action by enquire
frn.x ? b3
reset .or. nil (b3)

* end of c4.cmd

-Subrou~ine to get current connection to
-- requested hookup. All i/o in c4 link desigs

PROC get.current.tie (CHAN OF ANY to.cO, from.cO,
to.cl, from.cl,

VAL BYTE in.link, BYTE link.tied.to)

-- Note: all Bytes in terms of 0004 Link designations
SEQ

IF -- determine if in.link is already connected
in.link = byte.nil

SKIP
((to.slot[INT(in.link)]) < (16)) -- it is a linkO

-- get input link (if any) connected to in.link
c4.cmd(to.cl, from.cl, byte.nil, byte.nil,

in.link, link.tied.to)

((to.slot[INT(in.link)]) > (19)) -- it is a link3
-- get input link (if any) connected to in.link
c4.cmd(to.cO, from.cO, byte.nil, byte.nil,

in.link, link.tied.to)

otherwise
SKIP

* -end of get.current.tie

104

-Subroutine to make a connection between two 0004 links,
-- veirfy connection is made, and return status flag

PROC make.conn (CHAN OF ANY to.cO,from.c0,to.cl,from.cl,
VAL BYTE source, dest, BOOL conn.ok)

-SubSubroutine to handle a 0-0 or 3-3 link

PROC make.0033 (CHAN OF ANY to.a, fm.a, to.b, fm.b,
VAL BYTE src, dst,
VAL BOOL link.OtoO, BOOL conn03.ok,
BYTE in.a, in.b)

BOOL edge.used:
INT index, max.index
BYTE inputaa, inputbb

SEQ -- select appropriate index ranges for link
IF

link. OtoC
C!EQ

index :=0
max.index :=edge0.ct

otherwise
SEQ

index :=edgeO.ct
max.index :=edge0.ct + edge3.ct

edge.used :=TRUE
WHILE (edge.used AND (index < max.index))

IF
edge.ok[index] -- edge is still "good"

SEQ
c4.cmd(to.a, fm.a, byte.niJ, byte.nil,

ecige.a[index], inpu'-aa)
c4.cmd(to.a, fm.a, byte.nil, byte.nil,

edge.b[index], inputbb)

IF
((inputaa = byte.nil) AND
(inputbb = byte.nil))
SEQ -- if edge not currently connected
edge.used :=FALSE
c4 .cmd (to. a, fin.a, c4. input, output,

src, edge.a[index], in.a)
c4 .cmd (to. b, fm.b, c4 .input, output,

edge.bllindex], dst, inputbb)
c4. cmd (to. a, fin.a, c4. input, output,

105

dst, edge.bfindex], in.b)
c4 .cmd (to .b, fin.b, c4 .input. output,

edge.allindex], src, inputaa)

((inputaa =edge.a[indexl) AND
(inputbb = edge.b[indexfl))
connO3.ok TRUE

otherwise
connO3.ok FALSE

otherwise
index :=index + 1 -- busy, try next

otherwise
index :=index + 1 -- get next edge, "bad"

* -end of make.0033

.l ain Section for PROC make.conn
BYTE linka, linkb, inputa, inputb
BCOL crossiink.ok

SEQ
crosslink.ok :=TRUE

-make linka linkO of two to be connected if other
-- is link3. If both linkO's 3's, no matter

IF
((to.slot[INT(source)]) < (16))
SEQ

linka source
linkb dest

otherwise
SEQ

linkb :=source

linka dest

IF
(((to.slot[INT(linka)]) < (16)) AND
((to-slot[INT(linkb)]) > (19)))
SEQ

c4 .cnd (to. cO, from. cO, c4 .input, output,
linka, linkb, inputa)

c4 .cmd(to.c1, from.cl, c4.input.output,
linkb, linka, inputb)

(((to.slot[INT(linka)]) < (16)) AND
((to.slot[INTr(linkb)]) < (16)))
make.0033(to.cO, from.cO, to.cl, froin.cl, linka,

linkb, TRUE, crosslink.ok, inputa, inputb)

106

(((to.slot[INT(linka)]) > (19)) AND
(to.slot[INT(linkb)]) > (19)))
make.0033(to.cl, from.cl, to.cO, from.cO, linka,

linkb, FALSE, crosslink.ok, inputa, inputb)

otherwise
SKIP

-verify return input enq bytes match (high bit set)
IF -- links match, connected ok

((linka. = inputa) AND (linkb = inputb))
AND crosslink.ok)
conn.ok TRUE

otherwise -- links are not made
conn.ok FALSE

-end of make.conn

-Subroutine to brk a connection between two Tram Links
-- (may involve as many as 4 0004 links)
-- veirfy connection is broken, and return status flag

PROC break.conn (CHAN OF ANY to.c0, from.cO,
to.cl, from.cl,

VAL BYTE source, dest, BOOL broken.ck.

-- SubSubroutine to handle a 0-0 or 3-3 link

PROC break.0033 (CHAN OF ANY to.a, fm.a, to.b, fm.b,
VAL BYTE src, dst,
BYTE in.a, in.b, BOOL break03.ok)

EYTE edgea, edgeb

SEIQ
-- get edges used
to.a !c4.enquire; src
fm.a ? edgea
to.a !c4.enquire; dst
fm.a ? edgeb
-- disconnect the edges
c4.cmd(to.b, fm.b, c4.disconn.output, byte.nil,

edgea, in.a)
c4.cmd(to.b, fm.b, c4.disconn.output, byte.nil,

edgeb, in.b)

IF
((in.a = byte.nil) AND (in.b =byte.nil))

107

breakO3.ok TRUE
otherwise
breakO3.ok FALSE

c4.cmd(to.a, fm.a, c4.ciisconn.output, byte.nil,
src, in.a)

c4.cmd(to.a, fm.a, c4.ciisconn.output, byte.nil,
dst, in.b)

* -end of break.0033

-Main Section of PROC break.conn
BYTE linka, linkb, inputa, inputb
BOOL edge.free

SEQ
edge.free :=TRUE
I F

((to.slot[INT(source)]) < (16))
SEQ

linka source
linkb dest

otherwi se
SEQ

linkb source
linka dest

-break a tram link 0 to tram link 3
(((to sloq-INT(linka)]) < (16)) AND

(to. slIot [INT (Iinkb) I) > (19))
SEQ

c4 .crnd (to.cl, 'from.cI, c4 .disconn.ouitput.
byte.nil, linka, inputa)

c4.cmd(tc.cO, frorn.cO, c4.disconn.output,
byte.nil, linkb, inputb)

(((o.slot [INT(linka) ,) < (16)) AND
((to-slot[INT(linkb)]) < (16)))
break.0033 (to.cl, from.cl, to.cO, from.cO,

linka, linkb, inputa, inputb, edge.free)

(((to.slot[INT(linka)]) > (19)) AND
(to.slot [INT(linkb))]) > (19)))
break.0033 (to.cO, from.cO, to.c1, from.cl,

linka, linkb, inputa, inputb, edge.free)

otherwise
SKFI P

I 08

-- verify broken links inactactive (high bit off)

__ links verified broken
(((inputa = byte.nil) AND (inputb =byte.nil))

AND edge.free)
broken.ok :=TRUE

otherwise
-links not broken

broken.ok :=FALSE
a nd of break.conn

-main body of Controller Procedure

SEQ
__ initialization
to.cO c4.reset
tc.cl c4.reset
SET i 0 FOR 16

edge.ok[i] := TRUE
edge.index := 0
clock ? now
req.cnt :"0

WHI:LE TRUE
AT

from.pipe ? token; source; dest
SEQ

IF
token = link.req

SEQD
get.current.tie (to.cO, from.cC, tz.ci,

from.cl, source, src.ccnn)
ger.current.tie (to.cO, frorn.cC, tc.cl,

frorn.cl, dest, dst.conn

IF
((src.conn = byte.nil) AND
(dst.conn = byte.nil))

-- connections free, make the req~uest
SEQ

make.conn(to.c0, frorn.cO, to.cl,
frorn.cl, source,dest,accomplished)

IF
accomplished

SEQ
-- conn made OK, send ACK
to.pipe !link.ack; source;

dest

109

otherwise
SEQ

__ for whatevar reason, no go
to.pipe link.req; source;

des t
req.cnt req cnt + 1

otherwise -- repeat request later
to.pipe !link.req; source; clest

token = link.rel
-- break an existing connection btw 2 Trains
S SQ
break.conn(to.cO, frorn.cO, to.cl, from.cl,

source, dest, accomplished)
IF
accomplished -- links broken

SEQ
to.pipe !link.brk; source; dest

otherwise --links not broken,
-- let link.rel loop again

to.pipe !link.rel; scurce; dest

token = link.abt
SEQ

to.pipe !link.abt, source; dest
-- pass to originator

get.current.tie (to.cO, from.cO, to.cI,
from.cl, source, src.conn)

get.current.tie (to.cO, from.cQ, to.cl,
from.cl, dest, dst.conn)

continue := TRUE
i := 0
WHILE (Ci < 16) AND continue)

SEQ
IF

((edge.a [ii) =src.conn)
OR ((edge.b[i])=src.conn))
SEQ

edge.ok[ij := FALSE
continue := FALSE
to.pipe !BYTE(i+220); byte.nil;

byte. nil
otherwise

i =i +1

to.pipe !link.rei; source; dest
break.conn (t o.cO, from.cO,to.cl, from.cl,

source, dest, accomplished)
rake.conn (to.cO, froin.cO,to.cl, from.c1,

source, dest, accomplished)

110

IF
accomplished

to.pipe ! link.ack; source; dest
otherwise

SEQ
to.pipe link.req; source; dest
req.cnt req.cnt + 1

token = link.ack
--consume rest of acknowledge packet
SKIP

token = link.brk
-- msg cycled, consume
SKIP

token = link.rei
--consume rest of acknowledge packet
SKIP

otherwise
-- pass it on for testing and monitoring
to.pipe ! token; source; dest

(req.cnt>no.trams) & clock ? AFTER now PLUS delay
SEQ

clock ? now
req.cnt := 0
edge.ok[edge.index] := TRUE
to.pipe ! BYTE(edge.index+200); byte.nil;

byte.nil
edge.index := edge.index + 1
IF
edge.index >= (edge0.ct + edge3.ct)
edge.index := 0

otherwise
SKIP

* -- end of controller code

111

-TRAIM.CODE - code for each TRAM, performing work &
-- requesting links

PROC tram..code (CHAN OF ANY to.pipe, from.pipe,
link0.in, link0.out,link3.in, link3.out,

VAL TNT slot.desig, no.trams)

-- LTNK.MANAGER - maintains pipe local link control

PROC link.manager (CHAN OF ANY to.pipe, from.pipe,
mgr.to.agentO, mgr.from.agent0,
mgr.to.agent3, mgr.from.agent3,
mgr.from.user0, mgr.from.user3,

CHAN OF TNT mgr.to.user0, mgr.to.user3,
VAL TNT slot.desig, no.trams)

#USE '"c4cmds.tsr"
#USE "ctrlcmds.tsr"
#UJSE "intcmds.tsr"
BYTE linkO, link3
BYTE link0.tied.to, link3.tied.to
BYTE token, bytel, byte2, req.source, req.dest

-index corresponds to slot number wI 0-15 for linkO
and w/ 20-35 for link3

-stored value is hardwired C004 link to linkO or 3
VAL linkO3.desig TS 1122, 5, 4, 19, 18, 3,

6, 16, 9, 28, 31, 15,
12, 25, 26, 8, 99, 99,
99, 99, 23, 2, 0, 17,
21, 1, 7, 20, 14, 29,
30, 11, 13, 27, 24, 10]:

VAL TNT buffer.size IS 3:
[buffer.size-11CHAN OF ANY b:
[buffer.size-21BYTE t, s, d
CHAN OF ANY to.butfer:
BYTE t.in, s.in, d.in, t.out, s.out, d.out

PAIR
SEQ

linkO BYTE(linkO3.desig[slot.desig])
iink3 BYTE(linkO3.desig[(slot.desig+20)1)
link0.tied.to byte.nil
link3.tied.to byte.nil

112

WHILE TRUE
ALT
mgr.from.agentO ? token

IF
(token = cone.with.link)
to.buffer !link.rel; linkO;

linkO.tied.to
(token = failed)
to.buffer ! link.abt; linkO;

linkO .tied.to
(token = all.done)
to.buffer ! BYTE(slot.desig+lOO);

byte.nil; byte.nil
((INT(token)) < 36)
SEQ

__ token is a link designation
linkO.tied.to :

BYTE (linkO3.desig[INT (token)])
to.buffer !link.req; linkO;

linkO.tied.to
otherwise

SKIP

rngr.frorn.agent3 ? token
IF

(token = done.with.link)
to.buffer !link.rel; link3;

link3 .tied.to
(token = failed)
to.buffer !link.abt; link3;

link3 .tied.to
(token = all.done)
to.buffer !BYTE(slot.desig+120);

byte.nil; byte.nil
((INT(token)) < 36)

SEQ
__ token iS a link designation
link3.tied.to :

BYTE(linkO3.desig[INT (token)])
to.buffer !link.req; link3;

link3 .tied.to

otherwise
SKIP

frorn.pipe ? token; bytel; byte2
T F
token = link.req

to.buffer !token; bytel; byte2
token = link.rel

to.buffer !token; bytel; byte2'

113

token =link.ack
SEQ

IF
-if local link involved,

-- inform user to xmit
byte2 =linkO

SEQ
mgr.to.userO ! user.linkmade
byte2 :=byte.nil

byte2 =link3
SEQ
mgr.to.user3 ! user.linkmade
byte2 :=byte.nil

otherwise
SKIP

IF
-if local link involved,

-- inform user to xmit
bytel =linkO

SEQ
mgr.to.agentO ! link.made
bytel :=byte.nil

bytel =link3
SEQ
mgr.to.agent3 ! link.made
bytel :=byte.nil

otherwise
SKIP

IF
((bytel=byte.nil)AND(byte2=byte.nil))
SKIP -- consume

otherwise
to.buffer ! token; bytel; byte2

token =link.brk
IF

-if local links involved,
-- clear user status, consume

bytel = linkO
SEQ

linkO.tied.to byte.nil
mgr.to.agentO !link.gone

bytel = link3
SEQ

link3.tied.to byte.nil
mgr.to.agent3 !link.gone

otherwise
-- pass on if not of local interest
to.buffer !token; bytel; byte2

114

token = link.abt
-since originated by source,

-- consume if this is source
SEQ
IF

((bytel = linkO) OR (bytel =link3))

SKIP --consume
otherwise

to.buffer ! token; bytel; byte2

IF
byte2 = linkO

mgr.to.userO !user.failed
byte2 = link3

mgr.to.user3 user.failed
otherwise

SKIP

token =link.rei

SEQ
IF

-if local link involved,
-- inform user to xmit

bytel = linkO
SEQ
mgr.to.agentO !remnit
bytel :=byte.nil

bytel = link3
SEQ
mgr.to.agent3 ! remnit
bytel :=byte.nil

otherwise
SKIP

IF
-if local link involved,

-- inform user to xmit
byte2 = linkO

SEQ
mgr.to.userO !user.reinit
byte2 :=byte.nil

byte2 = link3
SEQ

mgr.to.user3 ! user.reinit
byte2 := byte.nil

otherwise
SKIP

115

IF
((bytel=byte.nil)AND(byte2=byte.nil))
SKIP

otherwise
to.buffer !token; bytel; byte2

otherwise
-- non-cmd byte, pass it on
to.buffer ! token; bytel; byte2

PAR
WHILE TRUE

SEQ
to.buffer ? t.in; s.in; din
b[O] t.in; s.in; d.in

PAR
PAR p 0 FOR (buffer.size-2)

WHILE TRUE
SEQ

b~p+] ?t(p]; s[p; dp]

WHILE TRUE
SEQ

b~buffer.size-2] ? t.out; s.out; d.out
to.pipe !t.out; s.out; d.out

-end of manager

-- AGENTO - handle data msg output for userO

PROC agentO (CHAN OF ANY mgr.to.agent0, mgr.frorn.agent0,
agentO .to.user0,
agent0.frorn.user0, link0.out,

VAL INT link.desig)

#USE remnit
#USE "intcmds.tsr"
#USE "blcksize.tsr"
#USE "faultime.tsr"
VAL block.len IS INT(block.size)
BYTE byte.in:
[block.len]BYTE msg
BOOL continue, aborted
TIMER time.c:
INT now, check.tirne

1 16

SEQ
agentO.to.userO !ready.to.rcv
continue :=TRUE
WHILE continue

PRI ALT
rgr.to.agentO ? byte.in

IF
byte.in = link.made

SEQ
msg[O] := BYTE(link.desig)

-- repi dest w/ source
time.c ? now
check.time := now PLUS fault.time
OutputOrFail .t (linkO .out,mrsg, time. c,

check.tine, aborted)
IF

aborted
SEQ
mgr.from.agentO !failed
mgr.to.agentO ? byte.in
Reinitialise (linkO .out)

otherwise
mgr.from.agentO !done.with.link

byte.in = link.gone
agentO.to.userO ! ready.to.rcv

otherwi.se
SKIP

acientO.frorn.userO ? rnsg
SEQ
mgr.from.agentu ! msg[U]
IF
msg[O] = all.done

continue :=FALSE
otherwise

SKIP
-end of agentO

117

-USERO - production process using linkO

PROC userO (CHAN OF ANY agentO.to.userO,
agentO.from.userO, mgr.from.userO, linkO.in,

CHAN OF TNT rgr.to.userO,
VAL TNT link.desig, no.trams)

#USE remnit
#USE snglrnath
#USE "intcrnds.tsr"
#USE "blcksize.tsr"

-- user supplied values
VAL block.len IS INT(block.size):
[block.len]BYTE data.out, data.in:
BYTE in.byte:
INT req.dest, counter, check.time,now, any. i.'t, seedl6:
BOOL continue, aborted, active
1NT"32 seed:
REAL32 result
TIMER time.c, clock

PRI PAR
WHILE TRUE

SEQ
mgr.to.userO ? any.int. -- trigger communications
IF

any.int = user.linkmade
SEQ

InputOrFail.c(linkO.in, data.in,
mgr.to.userO, aborted)

IF
aborted

SEQ
rngr.to.userO ? any.int
IF

any.int = user.reinit
Reinitialise (linkO. in)

otherwise
SKIP

otherwise
SKIP -- data rcvd OK, use as desired

any.int = user.reinit
Reinitialise (linkO. in)

otherwise
SKIP

SEQ
IF

link.desig < no.trams
SEQ

COI1LiflUC TRUE
counter 0

otherwise
SEQ

continue FALSE
counter 10000

clock ? seedl6
seed :=1NT32(seedl6)
--seed := NT32(link.desig*100)

WHILE counter < 1000
SEQ

counter :=counter + 1
-- generate data
SEQ i = 1 FOR (block.len-l)

data.out[i] :=100 (BYTE)

-- send to any link 0 or 3
req.dest :=link.desig
WHILE ((re;.dest =link.desig) OR

((req.dest >= no.trams) AND
(req.dest < 20)) OR
(req.dest >= (no.trams+20)))

-for link 0-0 ONLY! (commented out otherwise)
--WHILE ((req.dest=link.desig) OR

-- (req.dest>=no.trams))

SEQ
result,seed :=RAN(seed)
req.dest :=INT ROUND (result*31.0(REAL32))

-- put destination address in array at addr 0
data.out[0] : BYTE (req.dest)
agent0.to.userO ? in.byte
aaent0.from.userO ! data.out

agent0.to.usero ? in.byte
agent0.from.userO ! all.done

end of userO

119

-- AGENT3 - handle data rnsg output for user3

PROC agent3 (CHAN OF ANY mgr.to.agent3, mgr.from.agent3,
agent3 .to. user3,
agent3-from."iser3. link3.out,

VAL INT link.desig)

#USE reinit
#USE "intcmds.tsr"'
#USE "blcksize.tsr'"
#USE "faultirne.tsr''
VAL block.len IS INT(block.size)
BYTE byte.in:
(block.len]BYTE rnsg
BOOL continue, aborted
TIMER time.c:
TNT now, check.time

SEQ
agent3.to.user3 !ready.to.rcv
continue :=TRUE
Wt~HILE continue

PRI ALT
mgr.to.agent3 ? byte.in

IF'
byte.in = link.made

SEQ
msg[O] := BYTE(link.desig)

-- repi dest w/ source
time.c ? now
check.tine :=now PLUS fault.time
OutputOrFail.t(link3.out,msg,time.c,

check.time, aborted)
IF
aborted

SEQ
mg'r.fror.agent3 !failed
rgr.to.agent3 ? byte.in
Reinitialise (link3.out)

otherwise
mgr.from.agent3 ! done.with.link

byte.in = link.gone
agent3.to.user3 ! ready.to.rcv

otherwise
SKIP

120

agent3.from.user3 ? msg
SEQ
mgr.frorn.agent3 !msg[O]
IF

msg[O] = all.done
continue :=FALSE

otherwise
SKIP

-end of agent3

-- USER3 - production process using link3

PROC user3 (CHAN OF ANY agent3.to.user3,
agent3.from.user3, mgr.from.user3, link3.in,

CH-AN OF TNT mgr.to.user3,
VAL TNT link.desig, no.trans)

#USE reinit
#USE snglmaLh
UtSE "intcmds.tsr''
#USE "blcksize.tsr''

-- user supplied values
VAL block.len IS INT(block.size):
[block.len]BYTE data.out, data.in:
BYTE in.byte:
TNT req.dest, counter, check.time,now, any.int, seediG:
BOOL continue, aborted, active
INT32 seed:
REAL32 result
TIMER time.c, clock

PRI PAR
W.HILE TRUE

SEQ
rgr.to.user3 ? any.int -- trigger communicanions
IF

any.int = user.linkmade
SEQ

Input.OrFail.c(link3.in, data.in,
mgr.to.user3, aborted)

IF
aborted

SEQ
mgr.to.user3 ? any.int
IF

any.int = user.reinit

121

Reinitialise(link3.in)
otherwise

SKIP

otherwise
SKIP -- data rcvd OK, use as desired

any.int = user.reinit
Reinitialise(link3.in)

otherwise
SKIP

SEQ
IF
link.desig < (no.trams + 20)

SEQ
continue := TRUE
counter 0

otherwise
SEQ
continue :: FALSE
counter 10000

clock ? seedi6
seed := INT32(seedl6)
--seed := INT32(link.desig*100)

WHILE counter < 1000
SEQ

counter := counter + 1
-- generate data
SEQ i = 1 FOR (block.len-l)
data.out[i] := 100(BYTE)

-- send to any link 0 or 3
req.dest := link.desig
WHILE ((req.dast = link.desig) OR

((req.dest >= no.trams) AND
(req.dest < 20)) OR
(req.dest >= (no.trams+20)))

-- for link 3-3 ONLY! (comment out)
--WHILE ((req.dest = link.desig) OR

-- (req.dest < 20) OR

-- (req.dest >= (no.trams+20)))

SEQ
result,seed := RAN(seed)
req.dest := INT ROUND (result*31.0(REAL32))

122

-- put destination address in array at addrC
data.out[O] :=BYTE(req.dest)

agent3.to.user3 ? in.byte
agent3.from.user3 !data.out

agent3.to.user3 ? in.byte
agent3.from.user3 !all.done

-end of user3

-TRAM.CODE - master program for each Tram

-internal channels between users and manager
CHAN OF ANY mgr.to.agentO, mgr.from.agentO,

mgr.to.agent3, mgr.from.agent3,
mgr.from.userO, mgr.from.user3,
agentO .to. userO, agent3. to. user3,
agentO.from.userO, agent3.from.uiser3

CH-AN OF TNT mqr.to.userO, mgr.to.user3

PRI PAR
PAR

lirik.manager (to.pipe, from.pipe,
mgr.to.agentO, mgr.from.agentO,
mgr.to.agent3, mgr.from.agent3,
mgr.from.userO, mar.from.user3,
mgr .to. userO, mgr. to. user3,
slot .desig, no.trams)

agentO (mgr.to.agentO, mgr.from.agentO,
agentO.to.userO, agentO.from.userO,
linkO.out, slot.desig)

agent 3 (mgr.to.agent3, mgr.from.agent3,
agent3.to.user3, agent3.from.user3,
link3.out, slot.desig+20)

PAR
userO (agentO.to.userO, agentO.from.userO,

mgr.from.userO, linkO.in,
rngr .to. userO, slot. desig, no. trains)

user3 (agent3.to.user3, agent3.from.user3,
rngr.froin.user3, link3.in,
igr .to. user3, slot. desig+20, no. trains)

-- end of TRAM 2.CODE

123

-- Placed Pars (Controller ->T212, TramCode ->T8OO's)

-Global Declarations, Constants and Placed Pars

#USE "links.tsr"

-- control info passing pipe btw T212 and Trains
[no.trains+2]CHAN OF ANY pipe

-- links btw T212 and COO4s
CHAN OF ANY t2.to..cO, t2.from.cO,

t2.to.cl, t2.from.cl

-- make protocol for linkO's & 3's
-data xfer channels between all Trains (via C004's)

[no.trams]CHAN OF ANY linkO.to.cO, linkO.from.cl,
link3.to.cl, link3.from.cO

PLACED PAR
PROCESSOR no.trams T2

PLACE pipe[O] AT link2in
PLACE pipe~no.trams+ll AT linklout
PLACE t2.to.cO AT link~out
PLACE t2.from.cO AT link~in
PLACE t2.to.cl AT link3out
PLACE t2.froin.cl AT link3in

controller (pipe[O], pipe[no.trams+l],
t2 .to. cO, t2 .from. cO,
t2.to.cl, t2.from.cl, no.trams)

PLACED PAR slot = 0 FOR (no.trans)

PROCESSOR ((slot+l)*l00) T8
PLACE pipe[slot) AT linklout
PLACE pipe[slot4ll AT link2in
PLACE link0.froin.cl~slot] AT link~in
PLACE linkO.to.cO~slot] AT link0out
PLACE link3.from.cO[slot] AT link3in
PLACE link3.to.cl~slot] AT link3out

train.code (pipe[slot], pipe[slot+l],
link0.from.cl [slot), link0.to.cO [slot],
link3.from.cO[slot], link3.to.cl [slot],
slot, no.trams)

124

APPENDIX B

MESSAGE EXCHANGE TEST CODE FOR B004

-- TIMER - code for B004 Timer of B012 activity in MSGX
-- Operating on B004 Evaluation Board

#USE userio
#USE "links.tsr" -- transputer link defns
#USE "blcksize.tsr" -- data block size for ref

CHAN OF ANY up.in, up.out, echo.to.buffer

-- place links
PLACE up.in AT link2in :
PLACE up.out AT link3out :

PROC timer (CHAN OF INT keyboard,
CHAN OF ANY screen, up.in, up.out,
VAL INT no.trams)

#USE "intcmds.tsr"
VAL terminate IS 199 (BYTE): -- shuts down buffer procs
BYTE command.byte, bytel, byte2
BOOL more :
TIMER clock
[37] [7]INT counter -- various command counters
[6]INT total, grand
[36]INT user.done :
INT key.in, done.count, sum, sumtot, grandtot
INT start, stop, elapsed, slot.temp

-- main code for B004 monitor - TIMER

SEQ
-- initialize loop
more := TRUE
done.count := 0
sumtot := 0
grandtot := 0
SEQ i = 0 FOR 36

user.done[i] := 0
SEQ i = 0 FOR 37

125

SEQ j = 0 FOR 7
counter[i][j] := 0

SEQ i = 0 FOR 6
SEQ

total[i] 0
grandli] 0

clock ? start
write.int (screen, start, 12)
newline (screen)

WHILE more
PRI ALT

up.in ? comxnand.byte; bytel; byte2
IF

(((INT(comnandi.byte)) > (39)) AND
((INT(command.byte)) < (46)))
SEQ

__ command byte, get next two parameters
up.out ! cornmand.byte; bytel; byte2
-- update appropriate command counter
counter [to.slot[INT (bytel) II
[(INT(command.byte))-40] :
counter [to.slot[INT (bytel)]]
[(INT(command.byte))-40) + 1

(((INT(cortrand.byte)) > (99)) AND
((INT(cornrand.byte)) < (132))
-- a tram has sent a notice it is done xmit
SEQ
clock ? slot.ternp
user.done[((INT(command.byte))-100))

(slot.temp-start) *64) /1000
done.count :=done.count + 1
IF

done.count = (no.trams * 2)
SEQ
write. full. string (screen,

"Test Complete!")
newline (screen)
clock ? stop
elapsed := ((stop-start)*64)/1000
write, full. string (screen,

"Elapsed Time: ")
write.int(screen, elapsed, 12)
write. full. string (screen,

to Block Size: ")
write.int(screen, INT(block.size),12)

otherwise
SKIP

126

otherwise
SEQ

SKIP

keyboard ? key.in
SEQ

__ handle keyboard inputs
IF

(key.in = 81) OR (key.in =113) -- "Q": quit
SEQ

more :=FALSE
up.out ! terminate; terminate; terminate

(key.in = 80) OR (key.in = 112) -- "IP": pause
SEQ

newline (screen)
write.full.string(screen,"press any key.")
keyboard ? key.in

(key.in = 82) OR (key.in = 114)
-- "R": resend a byte

up out BYTE(60)

(key.in =83) OR (key.in = 115)
-- "5S": show summary

SEQ
newline (screen)
newline (screen)
sumtot := 0
grandtot :=0
write.full.string(screen,"IV
write. full. string (screen,

"link.req link.ack link.brk")
write, full .string (screen,

it link.abt link.rei "

newline (screen)

SEQ i =0 FOR 6
SEQ

grand[i] 0
total[i] :=0

SEQ i =0 FOR no.trams
SEQ

write. mnt (screen, i, 6)
write. int~screen,counter[i] [0], 12)
write.int (screen, counter [i] [13, 12)
write.int(screen,counter~i] [31,12)
write.int(screen,counter[i] [41,12)
write.int (screen, counter [i] [5], 12)
write.int (screen, user. done [i , 12)
newline (screen)

127

SEQ j = 0 FOR 6
SEQ
totalfi] :=total[j)+counter[i] LI
grandli] :=grand[j] +counter[i] [Ii
surntot := sumtot + counter[i] [ii
grandtot:=grandtot+counter (ii j]

write. full. string (screen, "Totals")
write.int (screen,total[O] ,12)
write.imt (screen, total[1] ,12)
write.int (screen, total [3] ,12)
write.int (screen, total [4] ,12)
write.int (screen,total[5] ,12)
write.imt (screen, sumtot, 12)
newline (screen)
newline (screen)

sumtot :=0
SEQ i = 0 FOR 6

total~i] :=0
SEQ i =20 FOR no.trams

SEQ
write.int (screen, i,6)
write.imt (screen, counter Li] [Oh 12)
write.int (screen,counter[i]1, 12)
write.int(screen,counter[i] f3],12)
write.imt (screen, counter [i) [4] ,12)
write.int (screen, counter[iW[5 , 12)
write.int(screen,user.done[i],12)
newline (screen)
SEQ j = 0 FOR 6

SEQ
total~j]:=total[j+counterfi[iI i
grandjl]:=grand~fj]+counter~i] [j]
sumtot :=surntot + counter Li] Li]
grandtot:=grandtot+counter[i][jI

write. full.string(screen, "Totals")
write.int (screen,total[O], 12)
write.int (screen,total [11,12)
write.imt (screen,total [3] ,12)
write.imt (screen, total [4],12)
write.int (screen,total [5],12)
write.imt (screen, sumtot, 12)
sumtot :=0
newline (screen)
newline (screen)
write.full.string (screen, "Grands")
write.int (screen,grand[O , 12)
write.int (screen, grand~l] ,12)
write.int (screen, grand[3], 12)

128

write.int (screenrgrand[4] ,12)
write.int (screen, grand[5I ,12)
write.int (screen, grandtot, 12)

otherwise -- any key, ignored
SKIP

-end of TIMER

-- BUFFER -- variable buffer on pipe

PROC buffer (CHAN OF ANY into.buffer, outof.buffer)

VAL INT buffer.size IS 3:
BYTE t.in, s.in, d.in, t.out, s.out, d.out
[buffer.size-l]CHAN OF ANY b:
[buffer.size-2]BYTE t, s, d:
[buffer.size-2]BOOL buffer.on
BOOL first.buffer.on, last.buffer.on
VAL terminate IS 199 (BYTE):
VAL BOOL otherwise IS TRUE:

PAR
SEQ

first.buffer.on := TRUE
WHILE first.buffer.on

SEQ
into.buffer ? t.in; s.in; d.in
b[O] t.in; s.in; d.in
IF

t.in = terminate
first.buffer.on := FALSE

otherwise
SKIP

PAR -- replicated PAR to desired buffer size
PAR p = 0 FOR (buffer.size-2)

SEQ
buffer.on[pJ := TRUE
WHILE buffer.on[p]

SEQ
b[pJ ? t[p]; s[p); d[p]
b[p+1] t[p]; s[p]; d~p]
IF

t[p) terminate
buffer.on~p] := FALSE

otherwise
SKIP

129

SEQ
last.buffer.on :=TRUE
WHILE last.buffer.on

SEQ
b~buffer.size-2] ? t.out; s.out; d.out
outof.buffer ! t.out; s.out; d.out
IF
t.out = terminate

last.buffer.on :=FALSE
otherwise

SKIP
-end of buffer

-- BUFFER -- variable buffer on pipe

PROC buffer (CHAN OF ANY into.buffer, outof.buffer)

VAL INT buffer.size IS 3
BYTE byte.in, byte.out:
[buffer.size-l]CHAN OF ANY b:
[buffer.size-2)BYTE byte.hold:
[buffer.size-2]BOOL buffer.on:
BOOL first.buffer.on, last.buffer.on
VAL terminate IS 199 (BYTE)7
VAL BOOL otherwise IS TRUE:

PAR
SEQ
first.buffer.on := TRUE
WHILE first.buffer.on

SEQ
into.buffer ? byte.in
b[O1] byte.in
IF
byte.in = terminate

first.buffer.on := FALSE
otherwise

SKIP
PAR

PAR p = 0 FOR (buffer.size-2)
SEQ
buffer.on~pI := TRUE
WHILE buffer.on~p]

SEQ
b(p] ? byte.hold~pI
b[p+1) ! byte.hold[p]
IF
byte.hold~p] = terminate

130

buffer.on~p] :=FALSE
otherwise

SKIP

SEQ
last.buffer.on :=TRUE
WHILE last.buffer.on

SEQ
b~buffer.size-21 ? byte.out
outof.buffer ! byte.out
TF

byte.out = terminate
last.buffer.on :-FALSE

otherwise
SKIP

-end of buffer

PAR
timer(keyboard, screen, up.in, echo.to.buffer, no.trams)
buffer(echo.to.buffer, up.out)

131

APPENDIX C

MESSAGE EXCHANGE ACTIVITY DISPLAY

-- STATUSdb - B004 Status of B012 activity in MSGX
-- To display activity of message exchange

#USE userio
#USE "links.tsr"

CHAN OF ANY up.in, up.out, echo.to.buffer,
buffer.to.echo, shut.down :

-- place links to intercept link control pipe commands
PLACE up.in AT link2in :
PLACE up.out AT link3out :

-- BUFFER.IN -- variable buffer on pipe before status
-- allows B012 to process pipe w/o backup

PROC buffer.in (CHAN OF ANY into.buffer, outof.buffer,
shutdown)

CHAN OF ANY to.buffer :
VAL INT buffer.size IS 25 -- number of buffer stages
BYTE byte.in, byte.out, byte.sd :
(buffer.size-l]CHAN OF ANY b: -- array of channels
[buffer.size-2]BYTE byte.hold array of command bytes
[buffer.size-2]BOOL buffer.on :-- array for shutdown

BOOL first.buffer.on, last.buffer.on, shutdown.active
VAL terminate IS 199 (BYTE): -- constant for shutdown
VAL BOOL otherwise IS TRUE:

PAR
-- get next input from B012 or from B004 for shutdown
PAR

SEQ
shutdown.active := TRUE
WHILE shutdown.active

ALT
shutdown ? byte.sd

SEQ
to.buffer ! byte.sd

132

shutdown.active := FALSE
into.buffer ? byte.sd
to.buffer ! byte.sd

-- place either in first buffer space,
--terminate process if shutdown

SEQ
first.buffer.on := TRUE
WHILE first.buffer.on

SEQ
to.buffer ? bvte.3n
b[O ! byte.in
IF
byte.in = terminate

first.buffer.on := FALSE
otherwise

SKIP
-- replicated PAR for m,.ilti stage buffer.

--Each terminated upon shutdown
PAR

PAR p = 0 FOR (buffer.size-2)
SEQ

buffer.on[p] := TRUE
WHILE buffer.on[p]

SEQ
blpi 7 byj.hold[p]
b[p+l] ! byte.hold[p]
IF

byte.hold[p] = terminate
buffer.on[p] := FALSE

otherwise
SKIP

-- final buffer stage for delivery to STATUS process
SEQ

last.buffer.on := TRUE
WHILE last.buffer.on

SEQ
btbuffer.size-2] ? byte.out
outof.buffer ! byte.out
IF
byte.out = terminate

last.buffer.on := FALSE
otherwise

SKIP
-- end of buffer.in

PROC statusdb (CHAN OF INT keyboard,
CHAN OF ANY screen, up.in, up.out, shutdown,
VAL INT no.trams)

133

#USE "intcmds.tsr"
#USE "ctrlcmds.tsr"
VAL terminate IS 199 (BYTE):
BYTE command.byte, bytel, byte2, link.byte
BOOL more, send.quit
TIMER clock :
[17jINT num.used -- array for # of links
[37] [6]INT counter -- array for # of commands
[6]INT total, grand -- totals and subtotals
[36]INT user.done :-- track TRAM USER done

INT key.in, done.count, sum, sumtot, grandtot :
INT nim.acks, num.reqs, num.brks, num.abts, num.reis
INT line.num, xpos.inc, asci.inc, offset
INT linkl, link2, links.used :
INT start, stop, elapsed, delay, now

-- translate input byte from BYTE
-- to english quivelanL for display

PROC xlate.byte (CHAN OF ANY screen, VAL BYTE x.byte,
VAL INT xpos)

#USE "intcmds.tsr"
#USE "ctrlcmds.tsr"
SEQ
goto.xy(screen,xpos,0)
TF

-- oytes 0-31 passed correspond to C004 link nos.
x.byte = (BYTE 0)
write.full.string (screen. "-Slot 2 Link 3 "

x.byte = (BYTE 1)
write.full.string (screen, "-Slot 5 Link 3 "

x.byte = (BYTE 2)
write.full.string (screen, "-Slot 1 Link 3 "

x.byte = (BYTE 3)
write.full.string (screen, "-Slot 5 Link 0 "

x.byte = (BYTE 4)
write.full.string (screen, "-Slot 2 Link 0 "

x.byte = (BYTE 5)
write.full.string (screen, "-Slot 1 Link 0 ")

x.byte = (BYTE 6)
write.full.string (screen, "-Slot 6 Link 0 ")

x.byte = (BYTE 7)
write.full.string (screen, "-Slot 6 Link 3 ")

x.byte = (BYTE 8)
write.full.string (screen, "-Slot 15 Link 0 ")

x.byte = (BYTE 9)
write.full.string (screen, "-Slot 8 Link 0 ")

x.byte = (BYTE 10)

134

write.full.string (screen, "-Slcc 15 Link 3 "

x.byte = (BYTE 11)
write.full.string (screen, "-Slot 11 Link 3 "

x.byte = (BYTE 12)
write.full.string (screen, "-Slot 12 Link 0 "

x.byte = (BYTE 13)
write.full.string (screen, "-Slot 12 Link 3 "

x.byte = (BYTE 14)
write.full.string (screen, "-Slot 8 Link 3 "

x.byte = (BYTE 15)
write.full.string (screen, "-Slot 11 Link 0 "

x.byte = (BYTE 16)
write.full.string (screen, "-Slot 7 Link 0 "

x.byte = (BYTE 17)
write.full.string (screen, "-Slot 3 Link 3 "

x.byte = (BYTE 18)
write.full.string (screen, "-Slot 4 Link 0 "

x.byte = (BYTE 19)
write.fullstring (screen, "-Slot 3 Link 0 "

x.byte = (BYTE 20)
write.full.string (screen, "-Slot 7 Link 3 "

x.byte = (BYTE 21)
write.full.string (screen, "-Slot 4 Link 3 "

x.byte =(BYTE 22)
write.full.string (screen, "-Slot 0 Link 0

x.byte = (BYTE 23)
write.full.string (screen, "-Slot 0 Link 3 "

x.byte = (BYTE 24)
write.full.string (screen, "-Slot 14 Link 3 "

x.byte = (BYTE 25)
write.full.string (screen, "-Slot 13 Link 0 "

x.byte = (BYTE 26)
write.full.string (screen, "-Slot 14 Link 0 "

x.byte = (BYTE 27)
4rite.full.string (screen, "-Slot 13 Link 3 "

x.byte = (BYTE 28)
write.full.string (screen, "-Slot 9 Link 0 "

x.byte =(BYTE 29)
write.full.string (screen, "-Slot 9 Link 3 "

x.byte = (BYTE 30)
write.full.string (screen, "-Slot 10 Link 3 "

x.byte = (BYTE 31)
write.full.string (screen, "-Slot 10 Link 0 "

-- tranclation for link control commands and NIL
x.byte = byte.nil

write.full.string (screen, "-Nil Byte
x.byte = link.ack
write.full.string (screen, "-link.ack

x.byte = link.rel
write.full.string (screen, "-linK.rel

x.byte = link.rei

135

write.full.string (screen, "-link.req)

x.byte = link.brk
write.full.string (screen, "-link.brk

x.byte = link.abt
write.full.string (screen, "-link.abt

x.byte = link.rei
write.full.string (screen, "-link.rei

-- miscellaneous signals used in rontrol & testing
x.byte = failed
write.full.string (screen, "-failed

x.byte = reinit.
write.full.string (screen, "-remnit

x.byte = done.with.link
write.full.string (screen, "-done.with.link N)

x.byte = all.done
write.full.string (screen, "-all.done

x.byte = ready.to.rcv
write.full.string (screen, "-ready.to.rcv

x.byte = link.made
write.full.string (screen, "-link.made

x.byte = link.gone
write.full.string (screen, "-link.gone

x.byte = (BYTE 199)
write.full.string (screen, "-terminated echo "

-- display TRAM DONE notices when received
(((x.byte)>(BYTE(99))) AND ((x.byte)(BYTE(136))))

SEQ
goto.xy(screen, 0,17)
write.full.string (screen, "-Tram")
write.int(screen, (INT(x.byte))-100,3)
write.full.string (screen, " done "

newline (screen)

-- display BAD EDGE notices when received
(((x.byte)>(BYTE(199))) AND ((x.byte)<(BYTE(216))))
SEQ

goto.xy (screen, 20, 20)
write.full.string (screen, "-Edge")
write.int(screen, (INT(x.byte))-200,3)
write.full.string (screen, " bad "

newline (screen)

otherwise
-- if unknown byte not successfully translated
SEQ
goto.xy (screen, 20, 18,
write.full.string(screen, "==UNKNOWN BYTE== "

write.imt (screen, INT (x.byte) ,6)
end of Klate byte

136

-PROC handle.screen -- for repeated screen
-- updates for various commands recieved

PROC handle.screen (VAL BYTE link.byte,

SEQ
-place the first byte on screen (source)

I F1

linki < 16 -- a link 0
SEQ

line.num l
xpos.inc 0

otherwisE - a link 3
SEQ

line.num 1n2
xpos;.inc 20

goto.xy(screen, ((linkl-xpos.inc)*3)+14,line.num)
write.char (screen, link.byte)

-- place th- second byte on screen (destination)
IF

link2 < 16 -- a link 0
SEQ

line.num lnl
xpos.inc 0

otherwise -- a link 3
SEQ

line.num 1n2
xpos.inc 20

goto.xy(screen, ((link2-xpos.inc)*3)+l4,line.nun)
write.char (screen, link.byte)
-end of handle.screen

-main code for B004 monitor

SEQ
-initialize loop
-- initialize all counters use d

num.acks 0
num.reqs 0
num.brks 0
num.abts 0
num.reis 0
more :=TRUE
done.count 0
links.used 0

137

SEQ i = 0 FOR 36
user.donei :i] 0

delay 32768
SEQ i =0 FOR 17

nurn.used[i] :=0

-- initialize display format
SEQ i "0 FOR 20
newline (screen)

goto.xy (ccreen, 0,1)
write.full.string(screen,"Slot Desig A B C D EN)
write, full. string (screen,

'IF G H I J K L M N 0 P")
newline (screen)
write.full.string(screen,"Slot#
SEQ i = 0 FOR 16

write.int (screen, i, 3)

-- intitiallize display columns
newline (screen)
newline (screen)
write.full.string(screen, "Link 0 REQ)

newline (screen)
write.full.string(screen,"Link 3 REQ :9)
newline (screen)
newline (screen)
write.full.string(screen,"Link 0 ACK "

newline (screen)
write.full.string(screen,"Link 3 ACK M"
newline (screen)
newline (screen)
write.full.string(screen,"Link 0 BRK :9)
newline (screen)
write.full.string(screen,"Link 3 BRK:)
newline (screen)
newline (screen)
write.full.string(screen,"Link 0 ABT M"
newline (screen)
write.full.string(screen, "Link 3 ABT :9)
newline (screen)
newline (screen)
write.full.string(screen,"Link 0 REI "

newline (screen)
write.full.string(screen,"Link 3 RET "

-- initialize edge status display
goto. xy (screen, 0, 21)
write.full.string(screen,"Edge #11
SEQ i = 0 FOR 16

write.int (screen, i,3)
newline (screen)

1 38

goto. xy (screen, 13, 22)
SEQ i =0 FOR 16
write.full.string(screen," + "

-initialize # of edges used display
goto.xy(screen, 64,0)
write.full.string(screen, "#Used Count")
SEQ i = 1 FOR 16

SEQ
goto.xy (screen, 65, i)
write.int (screen, i,3)

WHILE more
SEQ

up.in ? command.byte -- get next byte in pipe
IF

-take appropriate display and counter action
-for each command received from B012

((INT(command.byte)) > (39)) AND
((INT(command.byte)) < (46))
SEQ

__ command byte, get next two parameters
up.in ? bytel; byte2
up.out !command.byte; bytel; byte2
counter tto.slot[INT (bytel)]

(INT(comrnand.byte))-40] -
counter[to.slottINT(bytel) 11
[(INT(cornmand.byte))-401 + 1

xlate.byte(screen,command.byte,0)
xlate.byte (screen,bytel, 15)
xlate.byte (screen,byte2, 35)

-determine characters used on screen for
-- display of source & dest

IF
((INT(bytel)) < 32)

linki : to.slot[INT(bytel)]
otherwise

linki : 10

IF
((INT(byte2)) < 32)
link2 :=to.slot[INT(byte2)]

otherwise
link2 :=30

IF
linki 16

139

link.byte .- BYTE(linkl+65)
otherwise

link.byte BYTE(linkl+77)

IF
comnnand.byte =link.req

SEQ
handle.screen(link.byte, linki,

link2, 4,5)
num.reqs := num.reqs + 1
goto.xy(screen, 4,6)
write.int(screen,num.reqs,8)

command.byte = link.ack
SEQ
handle.screen(link.byte, linki,

link2, 7,8)
num.acks :=num.acks + 1
goto.xy(screen, 4,9)
write.int (screen, num.acks, 8)
linlks.used := links.used + 1
num.used[links.used] :
num.usedllinks.usel] + 1

goto .xy (screen, 70, links, used)
write.imt (screen,

num.used[links.used] ,6)

command.byte = link.brk
SEQ
handle.screen (link.byte, linki,

link2, 10, 11)
handle.screen(45 (BYTE), linki,

link2, 7,8)
num.brks :=num.brks + 1
goto.xy(screen, 4,12)
write.int (screen,nurn.brks, 8)
links.used := links.used - 1

command.byte =link.abt
SEQ
handle.screen(link.byte,linkl,

link2, 13, 14)
handle. screen (63 (BYTE) ,linki, link2, 7, 8)
links.used := links.used - 1
num.abts :-num.abts + 1
goto.xy(screen, 4,15)
write.int (screen, num.abts, 8)

140

command.byte = link.rei
SEQ
handle.screen (link.byte, linkl,

link2, 16, 17)
handle.screen(33(BYTE),linkl, link2, 7,8)
num.reis := num.reis + 1
goto.xy(screen, 4,18)
write.int (screen,num.abts, 8)

otherwise -- includina link.rel's
SKIP

-- handle various user keystrokes for
-- stepping speed, pause, etc.
clock ? now
PRI ALT

keyboard ? key.in
IF

(key.in = 81) OR (key.in = 113)
-- "Q": quit
SEQ

send.quit := TRUE
more := FALSE
shutdown ! terminate

(key.in = 43)
-- "+" = faster

delay delay / 2

(key.in = 45)
-- "-"= slower
delay delay * 2

(key.in = 82) OR (key.in = 114)
-- "R": resend a byte
up.out BYTE(60)

otherwise
send.quit := FALSE

clock ? AFTER now PLUS (delay * 100)
SKIP

-- handle TRAM (USER) DONE notices
(((INT(command.byte)) > (99)) AND
((INT(command.byte)) < (116)))

-- a tram has sent a notice it is done
-- xmittina on link0&3
SEQ

141

goto.xy(screen,13+(((INT(command.byte))-
100) *3), 4)

write.char(screen,2 (BYTE))

(((INT(command.byte)) > (119)) AND
((INT(command.byte)) < (136)))

-- a tram has sent a notice it is done
-- xmitting on link0&3
SEQ

goto.xy (screen, 13+ (((INT (command.byte)) -
120) *3) ,5)

write, char (screen, 2 (BYTE))

-- handle EDGE BAD info from T21L (via input buf)
(((INT(command.byte)) > (199)) AND
((INT(command.byte)) < (216)))
-- an edge status has changed to GOOD
SEQ
goto.xy (screen, 14+ (((INT (command.byte)) -

200) *3) ,22)
write.char (screen,43 (BYTE)) -- change to "+"

(((INT(command.byte)) > (219)) AND
((INT(command.byte)) < (236)))
-- an edge status has changed to BAD
SEQ
goto.xy (screen, 14+ (((INT (command.byte)) -

220) *3) ,22)
write.char(screen,45(BYTE)) -- change to "

otherwise
-- handle unknown bytes received (for testing)
SEQ
IF

command.byte = terminate
up.out ! terminate

otherwise
xlate.byte (screen, command.byte, 0)

-- terminate all processes in this monitoring program,
-- including all replicated PARs used in buffers
IF

send.quit = TRUE
SEQ -- flush queues
WHILE (command.byte <> terminate)

up.in ? command.byte
up.out ! terminate

otherwise
SKIP

end of B004 Monitor

142

-- BUFFER.OUT -- variable buffer on pipe

PROC buffer.out (CHAN OF ANY into.buffer, outof.buffer)

VAL INT buffer.size IS 3
BYTE byte.in, byte.out:
[buffer.size-1]CHAN OF ANY b:
(buffer.size-2]BYTE byte.hold:
ibuffer.size-2]BOOL buffer.on:
BOOL first.buffer.on, last.buffer.on
VAL terminate IS 199 (BYTE):
VAL BOOL otherwise IS TRUE:

PAR
SEQ
first.buffer.on :=TRUE
WHILE first.buffer.on

SEQ
into.buffer ? byte.in
b[O] ! byte.in
IF
byte.in = terminate

first.bufLfer.on := FALSE
otherwise

SKIP
PAR

PAR p = 0 FOR (buffer..size-2)
SEQ
buffer.ontp] := TRUE
WHILE buffer.onfp]

SEQ
blip] ? byte.holdlp]
bI~p+l] ! byte.holdlp]
IF
byte.holl~p] = terminate

buffer.on[p] :=FALSE
otherwise

SKIP

SEQ
last.buffer.oi := TRUE
WHILE last.buffer.on

SEQ
b~buffer.size-2] ? byte.out
outof.buffer ! byte.out
IF

byte.out = terminate
last.buffer.on := FALSE

143

otherwise
SKIP

-end of buffer.out

PAR
buffer.in(up.in, bufffer.to.echo, shut.down)
statusdb(keyboard, screen, buffer.to.echo,

echo.to.buffer, shut.down, no.trams)
buffer.out (echo.to.buffer, up.out)

144

LIST OF REFERENCES

1. G. Amdahl, "The Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities", AFIPS Conference Proceedings, Vol. 30., 1967

2. Communicating Process Architecture, INMOS Limited, Prentice Hall International,
Bristol, United Kingdom, 1988

3. Jesshope, Chris, "Reconfigurable Transputer Systems", Third Conference on Hyper-
cube Concurrent Computers and Applications, The Association for Computing Machin-
ery, New York, 1988.

4. Hart, Simon J., Design, Implementation, and Evaluation of a Virtual Shared Memory
System in a Multi-Transputer Network, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1987.

5. Lauwereins, Rudy, and Peperstraete, J. A., "Hypercube Argument Flow Multiproces-
sor Architecture With arbitrary Number Of Links", Highly Parallel Computers edited by
G.L. Reijns and M.H. Barton, Elsevier Science Publishers, Holland, 1987

6. Bryant, Gregory R., Implementation and Evaluation of an Abstract Programming
and Communications Interface for a Network of Transputers, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1988.

7. Dietel, Harvey M., An Introduction To Operating Systems, Boston College, Addi-
son-Wesley Publishing Company, Reading, Massachusetts, 1984

8. Hoare, C. A. R. "Communicating Sequential Processes", Communications of the
ACM, vr 1 "1, no. 8, pp. 666-677, August 1978.

9. The Transputer Databook, INMOS Limited, Bristol, United Kingdom, November
1988.

10. INMOS Technical Note 17, Performance Maximization, by Phil Atkin, Bristol,
United Kingdom, March 1987.

11. INMOS Technical Note 18, Connecting INMOS Links, by Michael Rygol and Trevor
Watson, Bristol, United Kingdom.

12. INMOS Technical Note 1, Extraordinary Use Of Transputer Links, by Roger
Shepherd, Bristol, United Kingdom.

13. INMOS Technical Note 27, Lies, Damned Lies And Benchmarks, by Roger Shepherd
and Peter Thompson, Bristol, United Kingdom.

14. Welch, P.H., "An Occam Approach to Transputer engineering", The Third Confer-
ence On Hypercube Concurrent Computers and Applications, The Association For
Computing Machinery, New York, 1988.

15. Burns, Alan, Programming In Occam 2, University of Bradford, Addison-Wesley
Publishing Company, 1988

145

16. Hoare, C.A.R., "The Emperor's Old Clothes", 1980 ACM Turing Award Lecture,
Communication ACM 24, 2, February 1981

17. Occam 2 Reference Manual, INMOS Limited, Bristol, United Kingdom, Prentice
Hall International, 1988

18. INMOS Limited, Transputer Development System, Prentice Hall International,
United Kingdom, 1988.

19. Hill, Glenn, "Designs and Applications for the IMS C004", INMOS Limited.,
Bristol, United Kingdom.

20. INMOS Technical Note 49, Module Motherboard Architecture, by Trevor Watson,
Bristol, United Kingdom.

21. INMOS Limited, IMS B012 User Guide and Reference Manual, Product Informa-
tion, Bristol, United Kingdom.

22. INMOS Limited, "IMS B401 TRAM (Transputer Module)", Product Information,
Bristol, United Kingdom, January 1988.

23. INMOS Technical Note 11, IMS B004 IBM PC Add-In Board, by Stephen Ghee,
Bristol, United Kingdom.

24. Harp, J. G., "Esprit Project P1085 - Reconfigurable Transputer Project", Third
Conference on Hypercube Concurrent Computers and Applications, Association for
Computing Machinery, New York, 1988.

146

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Libruy, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93,943,

4. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Gregory Buzzard, Code 52Bu
Department of Computer Sceince
Naval Postgraduate School
Monterey, CA 93943

6. Daniel Green, Code 20F
Naval Surface Weapon-, CEnter
Dahlgren, VA 22449

7. Jerry Gaston, Code N24
Naval Surface Weapons Center
Dahlgren, VA 22449

8. Captain J. Hood, USN
PMS 400B5
Naval Sea Systems Command
Washington, DC 20362

9. RCA AEGIS Repository
RCA Corporation
Government System Division
Mail STop 127-327
Moorestown, NJ 08057

147

10. Dr. M. J. Gralia
Applied Physics Laboratory
John Hopkins Road
Laurel, Maryland 20707

11. Mr. Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

12. Library (Code E33-05) 2

Naval Surface Weapons Center
Dahlgren, VA 22449

13. Aegis Modeling Laboratory, Code 52

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

14. Mr. Richard Onyett
INMOS Corporation
2620 Augustine Drive, Suite 100
Santa Clara, CA 95054

15. Lieutenant Winfred P Pikelis

Naval Submarine School
Box 700, Attn: Code 80 SOAC 89080
Groton, CT 06349-5700

16. Lieutenant Murat Kilic

Depwa twent of Computer Science
Naval Postgraduate School
Monterey, CA 93943

17. Mr. John Waite
PMTC Code 1051
Point Mugu, CA 93042

148

